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TECHNICAL MEMORANDUM X-53734

COMPARTMENT VENTING AND PIPE FLOW WITH HEAT ADDITION
By
H. G. Struck and John A. Harkins
George C. Marshall Space Flight Center

Huntsville, Alabama
ABSTRACT

One-dimensional quasi-steady theory is used to develop an engineer-
ing method to determine the time-dependent pressure in vented launch-

vehicle compartments during the first few minutes of the ascending
flight.

This method, by nature an iteration procedure, is intended to pro-
vide the structural design engineer with the reduced loads on the com-~
partment walls resulting from the venting process, The basic program is
set up for the CDC-3200 digital computer which can handle presently only
up to N = 5 compartments where the inner compartments must have only
one connecting orifice and the last compartment can have up to NV = 5
orifices venting into the atmosphere. Furthermore, the compartments
have to be placed in series. Though the compartment and orifice number
can be raised indefinitely, it is advisable to restrict the number to
as few as possible to keep the computation time low.

The basic program has been extended to offer combinations of com-
partment and connecting orifices, Compartment leaks and their accompany-
ing coefficients, as well as venting through a duct of varying cross
section, have been included. The effect of heating or cooling the duct
flow can also be computed.
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DEFINITION OF SYMBOLS

Symbol Definition Dimension
A orifice area m?

a mean radius of earth m2

c radial clearance m

c velocity of sound m sec™?

H geopotentigl altitude m

L flow length m

RH’ DH hydraulic radius, diameter m

v volume m3

X length of tube m

y/ geodetic altitude m

go gravity m sec™2

M Mach number -

t time sec

v velocity of gas : m sec™t

cp specific heat at constant pressure m Kg Kg~t °k~1
cy specific heat at constant volume m Kg kg™t °Kk™1
3 friction factor -

h enthalpy m Kg

K, K, loss coefficient, contraction coefficient -

L' temperature gradient °K Km-?

m mass Kg sec® m™1
il mass flow rate Kg sec m~t

iv



DEFINITION OF SYMBOLS

Symbol Definition Dimension
M, molecular weight Kmol Kg~*

P,§ pressure, mean pressure Kg m~2

Q heat per unit mass of gas entering Kg m® Kg=t sec~?

the volume

R, Reynolds number -
R gas constant m Kg Kg~* °K™%
T temperature °K
W external work Kg m
V4 specific heat ratio -
o density Kg sec2 m=+4
u absolute viscosity Kg m™ sec™?
T shearing stress Kg m™2
t loss coefficient for pipes other than
friction
o area ratio Ag/A,
Subscripts
1,2,1 designates sections under investigation
t total flow properties, total pressure, total density

Throughout this report the technical system of units is used; therefore
the unit Kg is the Kg force = Kp (Kilopond).
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COMPARTMENT VENTING AND PIPE FLOW WITH HEAT ADDITION

SUMMARY

One-dimensional quasi-steady theory is used to develop an engineer=-
ing method to determine the time-dependent pressure in vented launch-
vehicle compartments during the first few minutes of the ascending
flight.

This method, by nature an iteration procedure, is intended to pro-
vide the structural design engineer with the reduced loads on the com-
partment walls resulting from the venting process. The basic program is
set up for the CDC-3200 digital computer which can handle presently only.
to N = 5 compartments where the inner compartments must have only one con-
necting orifice and the last compartment can have up to NV = 5 orifices
venting into the atmosphere. Furthermore, the compartments have to be
placed in series. Though the compartment and orifice number can be raised
indefinitely, it is advisable to restrict the number to as few as possible
to keep the computation time low,.

The basic program has been extended to offer combinations of com-
partment and connecting orifices., Compartment leaks and their accompany-
ing coefficients, as well as venting through a duct of varying cross
section, have been included. The effect of heating or cooling the duct
flow can also be computed.

I. INTRODUCTION

Any internal launch-vehicle space bounded by rigid walls is defined
as a compartment. These compartments must be depressurized or vented
during the ascending portion of the flight trajectory when the surround-
ing atmospheric pressure decreases rather rapidly. Depressurization is
generally obtained by orifices cut into the rigid wall, or openings
leading into another compartment which is vented to the surrounding
atmosphere. The size and shape of the hole, as well as the pressure
differential from one chamber to another or to the atmosphere, deter-
mine the mass flux out of the compartment. Because of the mass transfer
to the next lower compartment, the density in the first compartment will
decrease and so will the internal pressure. Any inflowing mass from
upstream compartments, however, will increase the pressure again. This



indicates the dependence of the gas properties of the compartment on
dovmstream and upstream conditions, However, should choking occur in
one of the orifices or in the vent duct, the line of dependence is then
restricted to the downstream or upstream portion of the flow only., For
the isotropical orifice flow, empirical correction factors are used
which are a combination of contraction coefficients (vena contracta),
friction coefficients, and, for the outside vents, the influence of

the outside tangential flow,

Occasionally compartments are vented through ducts which might con-
sist of pipes with varying diameters, Adiabatic flow theory is then
applied with suitable pipe friction factors to calculate flow properties
in the duct. Heat addition to the flow 1s neglected when the duct is
not too long, since the time range involved is relatively short. How-
ever, for long pipes heat addition to the flow can have a definite effect,
especially when the temperature difference between ambient and pipe flow

is large.

The equations for the atmospheric data are taken from the U, S.
Standard Atmosphere, 1962 [9] with a simplified calculation of the geo-
potential altitude. These data can be corrected for a specific launch
location if a table of correction factors for the pressure is added as
a subroutine to the program,

II, THE ANALYTICAL APPROACH

A, Simple Orifice Flow

The venting problem, in reality a time-dependent unsteady
problem, is simplified to a quasi-steady one-dimensional problem; all
properties are therefore uniform over each cross section., Further
assumptions are that the heat transfer between the surrounding com-
partment walls and the gas within is negligible, and the gas remains
perfect throughout the entire venting process.

The approach consists of applying the mass and energy balance
equation and the equation of state. We begin with the mass conservation
law, expressed in general as

d(m) N
e Ta-



which states that the rate of accumulation of mass within the control
volume (c.v.) is equal to the excess of the incoming rate of flow

L

over the outgoing rate of flow
5

At any instance of flow,

@ ., = f dm . = f pdv, (2)
cv

m

where dV is an element of the control volume, p is the local mass density
of the control volume, and the integral is to be taken over the entire
control volume. Furthermore,

S Wy = Q0 4y (3)
ot ot

and
Z h, = j‘pvn dA; Z mh, = fpvn dAog. 4)

Equation (1) can now be written as

f -gf v = fpvn dA; - fpvn dAo, (5)



where vy is the velocity component normal to dA. The control volume is
now supposed to be the compartment, and with the assumption of one-
dimensional flow we obtain

d \
E‘E‘V=Zmi-2mo. (6)
‘n m

For steady flow, dp/dt = 0, and the incoming mass is equal to the out-
going mass, In equation (6), n and m designate the openings in the com-
partment through which gas can flow into and out of the chamber,
respectively. For the venting problem, we allow the density p to change
with time according to the difference of mass flux rate,

The energy equation of steady flow relates the external work
effect and the external heat exchange to the increase in the flux
enthalpy, kinetic energy, and potential energy passing through the con-
trol surface; then

’ 2 2 2
mdQ - dW,) =m(h +dh) -mh +m (& +d %) - m = + m(z + dz) - mz,
Q x 2 2

2
N
where dQ is the net heat added to the stream from sources external to
the main stream per unit mass of gas entering the control surface.
Likewise, dW, is the external work delivered to the outside body per
unit mass of gas entering the control boundary. For our problem, dWy = O,

and z, the height of the stream centerline to datum line, is negligible
for gas flow. Then equation (7) becomes

mdQ = mdh + md(vZ/2). (8
The enthalpy h is a function of the temperature only; therefore,

dh = cpdT, (9)



and equation (8) becomes

mdQ = chdT + md(v2/2). (10)

According to our assumption that no heat is added from the outside,
dQ = 0, and equation (10) becomes

dh = -d(v3/2). (11)
The mass flow rate is now given by the continuity equation as
m = oVA. (12)

With the equation of state

P = QRT, (13)
and
y P 1 2
c T= - = cs,
P ry=-1lp 7-1

the velocity can be obtained from the energy equation for adiabatic flow,
ve + 2cpT = const,

By assuming that the velocity in the upstream compartment is negligibly
small, vy, = 0, we obtain finally for the velocity with which mass is
flowing out of the compartment (Figure 1)

2 P P
v = |2 _:.__e&}. (14)
ex Y- lilen ey



With the relation between pressure and density for an isentropic process
of a perfect gas between two stations,

o
el Pex/P0) 7, (15)

substitution of equations (13) through (15) into (12) yields the mass
out of the compartment:

y -1 P

1/y r=1
rh=AK~lzplpl<§—i’5 -—L[l-@ 7], o (16)

The discharge from a compartment orifice is considered to be an isen-
tropic process, since we used isentropic relations for establishing the
mass flow rate. Any losses of mass flow rate due to total pressure and
contraction are represented by the loss coefficient K < 1., The pres-
sures Pex and P,, as well as the density p;, have to be representative
mean values for a time-dependent process.

If the flow in the orifice becomes sonic, the mass flow is
independent of the pressure difference across the orifice:

1
T
. 2
m=AK\/2Plpl<y+l> / Th . (17)

Because of the outflowing and inflowing mass, the density, pressure, and
other properties within the compartment are changed. To obtain the
necessary relation from equation (6), we approximate the differential
quotient dp/dt by a difference quotient:

do Lo _ BP(t + At) - P(t) _ p(ty) - p(tg) (18)
dt ~ At At t] - tg ’



Substituting equation (18) into equation (6) results in the following
expression for the density:

p(t1) = p(to) |1 + ’ (19)
o(ty) Vv

and according to the gas relation (equation (15)) the pressure at time
ty becomes

At [Z r'ni - Z r'noJ
P(t1) = P(ty) |1 + . (20)
p(ty) V

The pressure, density, and mass flow terms in equations (20) and (16)

have to agree with each other within the compartment during a particular
time step, At = (t; - ty). Since equation (16), the mass flow rate equa-
tion, uses mean values of the pressures, an iteration procedure is neces-
sary so that P; represents a mean value of P(t;) and P(t,) in the particular
time interval At,

To circumvent at least one iteration procedure for finding the
mean pressure value of a single compartment, a series approximation of
equation (16) and (20) may be used provided that the pressure change for
a small time step can be assumed to be linear,

If we set

- P,(ty) + Pai(ty)

and if

™

rJs
=



(where Fex is also a mean value of the external pressure at that particular
time step) does not differ very much from unity, a series approximation
can be made with

(1 . —Ba_
X <1 Pl(to)> <1, (21)

Departing from equation (16) with the above notation, we obtain for n
vent holes

-1
== 1/e

B U —_— Pex\L/7 i Pex \ 7
Zﬁi°= ZAHKH ?Fapa <E§ n> J 7-1[1-( n> } ' 22)
n 1

n Py

With the isentropic gas relation, we can introduce the pressure of the
compartment at time (ty), P(ty), which is assumed to be known since it
is the pressure at t; of the previous time step.

Pex ) Pex . Pl(to) 23

P, Py (ty) By

and the square root term is

3L
— 5 2y
\[2Plpl = '\fZPl(to) p1(tg) ﬁi‘o—)> . (24)

With the abbreviations

n

1 P 1/y
<, =\/¥“/2Pl(to) p1(ty) ZA “n Ci}EzOD =
1




and

n -
2; Pexn 26
€y = Pl(to) ’ ( )
1
we obtain for the mass flow rate of equation (22) finally

-1
= 1/2

2=l
O 5 2y 1(E N 7
P
2o (i) [1-C ) a] 0
n

and with equation (21), equation (27) becomes

- Cy. (28)

The first term on the right-hand side of equation (28) can be developed
into a series

2-1

4
- y =1 y=1lee =D +1)
[1 x] 1-f==x-=X &

X2 +0@xY.  (29)

Inserting (29) into (28) yields

Lyl (-DO+1) a 4
= > 5z X e X3 + 0(x%).

(30)



Similarly, we proceed with equation (20), where the outflowing mass m, is
brought to the left side, With the stipulation already mentioned above,
i.e.,

P(ty) + P(t,)

P = 5 ,
we obtain
— —ﬂ. pl(to)V ﬁl 1/7
Zfﬂo—zmi'f'T'l:l- ZW']. ]. (31)
n n
With the substitution of
cp = — (32)
At ). m
1+ L
pl(to)V

and equation (21) inserted into equation (31) yields

- 1/y 2/y
=1-2c2[2(1-x)-1} +c2{2(1-x)-1:’ )

(33)

The inflowing mass

T

in equations (31) and (32) is assumed to be known, since it represents
the mass-flow of the upstream compartment for which the procedure described
here has already been conducted. For n(n > 1) compartment, however, a

10



second iteration is necessary, since the outflowing mass, m,, influences
the inflowing mass, mj, unless the upstream orifice was choked. Develop~
ment into a series leads finally to

2
_
AtC2Z‘ﬁlo
n e (1 - o2 beX o 4eox? . .
NCRR] (L= c2)® + 22 (1 - eg) + 28| (7 - 1) + ca(2 - 7)

L= §;3802X3 [(27 - 1) + 4ea(2 - 7)} +0(x%).  (34)

Equations (34) and (30) have to be set equal in f, to obtain X. Before
we go to this step, however, some useful abbreviations are introduced.
We set:

U = (1 =~ c2)% Bo = (1 - c3)
Oy = bea(l - c2)/y; Br= (y - 1)/y
Oz = bea[(7 = 1) + c2(2 - 7)1/73; Bz = (7 = 1)/ (27®)
Qs = (7 = 1) 8cal(2y - 1) + 4ca(2 - N1/37% Bz = (y - 1)(y + 1)/ (67%)
Qg = [Ateo/ (P1(tx) V) ]F Bs = (1/cy)®
(35)
and
1 . U L : +a'
Bo 50/34, ao = o:o/a4 Al = sz + a'a
Bl - o
B1 = Bi/Ba; o = O/ 0ty A; BZ y az
5'2 = Bo/Ba; 05:2 = O/ A o O." + g
ST Ear
B; = Bs/Bas; 0% = Qs/04

11



and the solution for X yields

= éi 3 2
X = - &2 +4al - AL X® + a}/2)7, (36)

where Ag can be left out and X can be obtained without iteration or can
be used as a correction to X, if retaining of only the quadratic terms

is not enough to obtain an adequate accuracy. However, only the positive
sign of the square root is used for the mass flowing out of the compart-
ment, The mean pressure of the compartment is finally

Py = Py(to) 1 - XI. (37)

For choked flow, equation (17) is used, which becomes now, for n orifices
of the compartment,

[Z m°J <P1(t )> Z, Aokn)® 575 1> 7+ 1 LZPl(t ) pl(to)]

n
(38)
With the abbreviation
2
2 V1 \
cz; = <7 T 1> 7—%'1' [ZPl(to) pl(togl Z (AnKn)Z, (39)
' n
equation (38) becomes
[Z mo:] [ Z— X + 1—-—— x2 + Lt 127(33' = L) ya 4 o(x‘*)].
n
(40)

12



Substituting

By = 1 By = Bo/Ba
Br= (v + 1)/ B1 = B1/Pa
Bz = =(7y + 1)/ (2y®); Bo = Bz/Ba
Bs = =(7 + 1)(y - 1)/(67®); B3 = Bs/Ba
Ba = 1/cf;

we obtain the same expression as equation (36).

B. The Adiabatic Flow in Constant Area Ducts with Friction

The assumption is again that the gas is perfect., The rate of
change of the gas properties depends now on the amount of friction, so
that the momentum equation must be introduced.

The perfect gas relation was given by equation (13); taking
logarithmic differentials, we obtain

dp _do, dr
i i (41)

The definition of the Mach number, which was not previously introduced
is, for a perfect gas,

M2 = v2/yRT (42)
or

2 2
d d
o= - 4. 43)

13




The energy equation, given by (10) with dQ = O becomes by dividing
through by cpT and using the definition for the Mach number

dT -1 dve
S+ig=ur iz =o. (44)

The continuity equation (12) becomes in terms of logarithmic differen-
tials with the mass flow as a constant

d 1 dv@
—pe+5';z—=0. (45)

The momentum equation is written as

-AdP - T, dA = fdv, (46)

where Ty is the shearing stress exerted on the stream by the walls, and
dA, is the wetted wall area over which 7, acts., Introducing a friction
coefficient f£(x), we obtain

2Tx
f = —= 47
e (47)
and a hydraulic diameter
__ s _u
Pp @ /X T2 (48)

For a circular pipe the hydraulic diameter is thus equal to the diameter
of the pipe. Inserting these expressions into equation (46), we obtain
the momentum equation which, divided through by P, can be written, with

~gv2 = 7PM2, as

V2

[aN

2
P AL o S = 0.

2
m=
? + 5

.’IZU |.’><!
L

14



By eliminating dP/P and dv3/v®, we obtain finally,

for a pipe of length
L between sections 0 and L

1
-
j 4E (X) g—§= f L-M M2, (49)
o M2 y(M"’) 1+%1M2>

- 1
F=r f £dX. (50)

Equation (49) when integrated between 0 and L or M§ and Mi becomes

- L 1 1 v+ 1
74f === |5 - == + In . (51)
Dy Mo M 2 2 (1 + L— M2>

Known data are the friction coefficient £ for the pipe of length L and
the hydraulic diameter Dy. The inlet Mach number M can be computed
with the ‘aid of the mass flow from the upper compartment to the pipe

and the pressure at the pipe inlet, depending on the type of approach:
isentropic for a converging pipe inlet section or adiabatic for a sudden
constriction., The pressure, not known a priori, can only be obtained by
an iteration scheme, assuming first a Mach number, M,. Then with equa-
tion (51) the Mach number increase for subsonic flow can be calculated
between 0 and 1. With the relation

(1 +2'-—M2>
l= OM:L s
1+L-M>

15



the respective pressure drop due to friction can be calculated. If the

Mach number at station 1 is subsonic, then the exit pressure P; must be

equal to Pex, the atmospheric pressure outside the pipe. If this is not
the case, we must repeat the calculation with another Py, which in turn

will alter the mass flow from the upstream compartment,

If the exit of the pipe is choked, M; = 1, then the Mach number
M, is fixed and one has to calculate on an iterative basis the inlet
Mach number, M,, and the corresponding pressure, P,. The pressure and
density at station O are then given by the relations

P
1 + 1

== 2 : (52)
0 2 <1 + L_;_l M§>

and

v *
A\ po -1 -
2 {1+ Z_E_- M

where the asterisks designate critical values for which the Mach number
is M =1.

Equation (51) cannot be solved explicitly. For subsonic flow,
the following iteration scheme has proven to be stable,

Mo
M; = /, (53)

-1 1/2

e (1 e )

1 - L
[1 + Mg X ; 1 1n o 2 -M§7 <%f 5-+§>]
2 r -1 2
i (1 st )

where { is a loss coefficient of obstacles in the pipe such as bends,
constrictions, etc. It can be a function of the Mach number or the

16



geometry of the pipe. 1In the equation M, appears in the logarithmic
term of the denominator. The length of the pipe for choked flow is

given by

D MZ (1 + 9) -
L=i_l:M—lgo-1+L’2’11n 0 - 2t |. (54)
4yt 2<1+L%—1M§>

C. Flow in Ducts with Heating or Cooling and Friction

The determination of the flow parameters again requires the
application of the three conservation equations and the perfect gas
equation, We retain now dQ in equation (10):

- 2 -
dqQ cpdT + d(v=/2) cpth, (55)
and with the definition of the Mach number of a ﬁerfect gas equation
(42), we can find the following relations [8]:

For the Mach number increase along the pipe,

2 (L + 9M3) 1+%1M2> at, 7M~°-<1 +1-§-—1M2>
+

dM = d(x
e 1 - M2 Ty (x) T - M= 4t E();%'(SG)

For the velocity increase,

1 +7;—1M2 dr,

dv _ M2 z /L)
v S T1o® T Tza - (/L) (7
For the speed of sound,
- -1 >
e _ a- M) (1 + 5 M2 dT, Cy(y - 1) M2 4 4G/L) 58)
c 2(1 - M%) T (x) 4 - M=) (Dy/L)

17



For the temperature,

Q-3 (1+ 2—;le> ar,

at _ _ox(y = 1) ME d(xg)
T P ey B T T A W (59)

For the density decrease along the pipe,

- 1
1 + L=t M2

dp _ _ 7 M 9% MR e dGdL), 609
0 1 - M= T (x)  2(1 - M=) (0,/L)

For the pressure decrease,
4P 7 (M2) ( + -Z-——M2> dT, M= <1 + (y - 1) M) p
& - = - = 4 d /L) (61)
P 1-M T, (x) 2(1 - M=) (DH{L)

The total pressure loss is given by

B e 47 SGUL). 62
P 2 T, (x) " 2 (Dy/L) ©2)

Equations (56) to (62) have to be integrated numerically. Q is the heat
transferred to the flow within the tube from external sources, per unit
mass of stream,

Equation (56) shows that heat addition, expressed as total
temperature increase, causes the Mach number to increase above that
caused by the friction force. The choking length of the tube is there-
fore shorter. We notice that equation (56) is a singular ordinary dif-
ferential equation of the first order. 1In the domain 0 = MZ < 1, the
right-hand side of equation (56) is continuous. A singular p01nt is
encountered at MZ = 1,

18



We solve the equation by applying the method of successive
approximation, which is also known as Picard's method. If equation (56)
is written in the general form as

M e
B . sz,

then the solution has the form of

X

M2(x) = M3(xp) + f £QM=,8) d¢.

Xo

This relation is, in reality, an integral equation, involving the dependent
variable under the integral sign. It can be solved on an iterative basis
as follows:

X
MR(x) = M2 (x,) + f £(8,M2) dg
xO
X
M2 = ey + [ £ a
xO
X
M2(x) = MZ(x,) + f £(g,M5_ ) dE.
X
(o]

As n increases indefinitely, the sequence of functions Mﬁ(x) tends to a
1imit which is a continuous function of x, and the limit-function satis-
fies the differential equation. On the other hand, the Lipschitz con-
dition has to be satisfied. If (x,M?) are two points within the domain
of the same abscissa, then

19



£, M2) - £6e,M3) | < K|MZ - M3,

where K is a constant. In the neighborhood of M = 1, the Lipschitz con-
dition no longer holds. Rearranging equation (56) yields

dx _ 1 - M3
M2 <1 + Z—-;——l M2> [(1 + M%)

dM2@ dT, ’

2
d(x/L)T()"M "f}

or in general form

= g(x,M3).

s

The function g(M2,x) is now singular at M® = 0 and dx/dM® = 0 for M® = 1,
The method of successive approximations can again be applied. The solu-
tion now has the form

M2
x(M%) = xM5) + f g (x,M%) dM2,
Mg

Instead of the Lipschitz condition, a less stringent condition can be
applied. For instance, a step sensitivity condition such as

d 2
| M €15 M? - M§|§ €lle - Xp

1A

for the first case and

1 ol*

s €53 X1 - xol =

20



If €, and €, are of the order €;;ep = .002, the analytic solution of
equation (56) with dT, = O was almost exactly reproduced. The two solu-
tions are joined where the step sensitivity condition was satisfied for
both regionms,

Once the Mach number distribution along the length of the pipe is

obtained, the other flow properties can be calculated by a simple rela-
tion of the properties at two statioms (1 and 2):

(1 + L‘.—l M2

P Tyo 2 1
2.l ,
Pl M2 Ttl <1

L1 1 M2>
2 2

v, M
g = BTy,
k1

Vi
PRI,
P, P;T2

I ,
T, -

4 L= 2 1
it_2=1’_2[ 2 2]7'
e Prlia 22ty

The Mach number distribution in general depends on the nature of the
temperature distribution and the heat flux along the pipe., For some
cases, one can combine the friction coefficient and heat transfer coef-
ficient via the Reynolds analogy, and the integration of equation (56)
might be possible in closed form [8].
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D. Sudden Enlargement in a Pipe

The only loss coefficient which can be calculated by simple
analytical methods is the case where there is a sudden enlargement in a
pipe. The problem was first treated by Borda and Carnot and is there-
fore known as the "Borda-Carnot loss."

The flow 1s again adiabatic, and it is assumed that the pressure
across the face of the enlargement is equal to the pressure in the smaller
pipe, just before the enlargement.® According to Figure 1b, the three
basic equations can be written as follows:

Momentum
ﬁl(Vz - Vl) = AE(Pl - P2). (63)
Continuity
PiviA1 = pavAAz. (64)
Energy
ve ve 1
L2 B 2,2 _Pa_ 2 Fl 2 (65)
2 "y=1lpy 2 y=-lpz 2(y-1)

where c* is the velocity of sound where the Mach number is unity. For
adiabatic flow, the stagnation temperature is constant, and we can write
for v = c*, the right-hand term of equation (65) as

v2
ﬁ-=2_:__1.c*2_L+1_.__1}=7_+_lC*2_1_'_1v2 66)
P1 4 2(y - 1) 2 2y 2y ‘1
and
Po_ 2+l 42 _2-10 67
P2 27 ¢ 27 2° ( )

*
This assumption restricts the subsequent equations and M; = 1.
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From equation (63) and (64), we obtain

1 2 PVAz pzvz  pvad’
Hence, with equation (52) and (67) introduced into (68)
- 2 2
Vi ~v2=§{7+1_y-1vl}_c* L+1_7-1v1} (69)
c* vy | 2y 2y o*2 xy | 2y 2y o*2 !
where @ is equal to the ratio A;/As. In terms of the critical Mach
number M*, we obtain
% _ kL Jy +1 oy -1 %2 _ _1 y+1 y-1 %2
M "M T W T2y 7y Mz J @ % 7y, M (70)
and
2 1y =1 & _ _27 x _ _1 % -
Q%) +{5217+1Ml 7+1Ml ﬂ_ff My + 1 =0, (71)

This equation is solved for M;, the Mach number in the larger pipe, and
the positive sign of the square root is taken. The density and pressure
ratios can then be calculated as

o
density - —& = - (72)

and, with the gas law (13),

% 2y -1 *2>
P2 Ml (? 7 + 1 Mo

ressure = == = . 73
p u P N M* (1 _ - 1 M* Z) ( )
2 ry+1 1

23



The relationship between Mach number M and M*, is

2
M2 = ar = (74)
(7+1) - (7 - 1) ¥
The density and pressure can be written as follows:
. P My [ (y - 1) M2+ 2
- =R = g2l 2. .
density 5. Q’MZ G - 1) Mi s (75)
2
M
o
pressure - 52 = oF -ﬁ-—i . (76)
1 M2 P2

E. A Sudden Contraction in a Pipe

Here, the main features are an acceleration zone leading to the
development of a vena contracta, followed by a deceleration zone similar
to that analyzed by Borda and Carnot.

The total pressure loss can be calculated approximately by the
following idealization. The smaller tube with the area A, and a given
mass flow th is placed into a stream of velocity V; < V5. Then the stagna-
tion point of the free streamline is located on the outside of the tube,
The gas contained inside the free stream tube of area A, flows with an
energy loss through the tube, since the flow separates at the lip of the
pipe and contracts at the entrance (see Figure 10, lower part of the
schematic). The surface of the free stream tube can now be solidified,
thus forming the upstream tube with the area A;; (A; > A).

The momentum equation in the x-direction yields

thV2+(P-Pl)2A2=IhV1+(P-P1)1A1+S+f(P-Pl) de.
S
a7
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If we assume that the wall of the narrow pipe is thin 8/d, = 0,
then the suction force S can be taken as zero. The pressure difference
(P - P,;) integrated over the free stream tube surface is zero by defi-
nition of the free streamline. However, in practical cases, where the
idealization is rather far off, a pressure difference (P - P,), dependent
on length b, builds up in the corner of the two pipes BCDE. With decreas-
ing length b, the difference in the pressures P and P; becomes more pro-
nounced and the integral must be taken into account. One approximation
could be obtained for the case of b = 0 and A; >> A,

Abbreviating equation (77), we get

T =38+ f(P-Pl)de.
S

The mass flow through the tube is constant and

M
m=pVs Ap = 7P> 22 (Ct/c)z Ao. (78)
t

With the continuity equation,
PMa(c /c)z Az = PiMi(e, /)y Ay, (79)

and the relation,

Pt2 = t1 | 52 , (80)
P2/Pt2 1

ta
one can obtain, after rearranging equation (77) and solving for

1

P
—= =
1+ Mom MMy(c,/c2)/ (e /e1) = T/ (PzAz)

Py

the expression for the total pressure loss across the contraction
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-1
<1 + -Ll M2>
Pt

2 2 1
- ' e . 8
z=1 = <1 i MZ> / T
2
<]. + 2 Ml> 1 + 7M 7M1M2 <1 N ; 1 M2>l/2 - P2A2

The term T/P-A- is definitely a function of Mg and Mi. For the case of
M, = 0, a very simple expression is obtained for calculating the Mach
number Mo, We set

i T
o = —2 ; s=7[1-———2]. (82)
A2 7 Ptl ptl Pg A2 4 M2

Then the Mach number in the pipe entrance becomes

2 - (Zﬁa - 1) 20 (280 - 1)2
Ma = (y - 1 - 285 i‘J/ (y -1~ 2p%01) + (y - 1 - 26702 ° (83)

2 . .
where the Ms is chosen, which is positive and smaller than unity. 1In
engineering literature where energy loss coefficients are considered, the
definition is

= 20E _ Py - Pp Vi - v3 - Pea - Pes
z z
Ve 4z V5 12

and in terms of the total pressure ratio between the stations 1 and 2 in
Figure 1C,

P - P P
ti te 2 P te
C = = —= (P /Pl) a - )
% P, M§ 7M? t1 Po Ptl
where
P 1
t -1 . 2V
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When we develop P.,/P; into a series for small My and let A, increase
indefinitely, so that M; = 0, we obtain a simple expression for the
energy loss coefficient

e (1 -L1y2. 2% ya. 2 T . om®
¢ <1 Z M2 2% Mz 7M§ P- As PoAs OCM2)>.

Our next task is to obtain an expression for the integral term T. For a
sharp-lipped inlet of the pipe, the suction force S vanishes, and thus

T-f(P- P;) dS_.
S

In general, the pressure difference along the distance C - D in Figure 1C
is a function of M; and My, In our case, however, M; = 0, and therefore
the term

1
=2 u/‘ Cp(r/Ra)(r/Rz) d(r/Rp)

o0

2T
7 M2 P2 Ap

is only a function of the Mach number My in the pipe. As a next step,

we want to obtain an approximate expression for the pressure coefficient
along the wall C - D. As a first approximation, which is valid for small
Mach numbers Mo, we treat the flow as incompressible, p; = p> = p. The
length b is zero. The Bernoulli equation along the streamline C - D
yields

v2 v
2 p1 2 p22

o I

For A; » o , the velocity V; vanishes, and the pressure coefficient reduces
to

= - y2/V°
cP \Y /V2.
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The mass flow is constant between stations 1 and C, where A. = KpAo and
Ko is the contraction coefficient

xh=pV K0A2=pv2A2

C

and therefore

Ve

.

_Jz
KO

The limit of the pressure coefficient between point C, which has shifted
with A; - », and-D is at point C V = V; = 0, and the pressure coefficient
vanishes. At point D, V = Vg = Vo/K, and the pressure coefficient becomes
cp = -1/K,. Between the points C and D, the velocity behaves, at large
distances from D, as a point source in the presence of a wall, and the
velocity is proportional to 1/(r/Rz)2. 1In the vicinity of D, r = R,

the velocity vanishes faster than 1/(r/Ry)2, since the derivative of V

at Rp is infinite; V, however, is finite and equal to Vg. The velocity
derivative dV/dS, as a matter of fact, has theoretically a logarithmic
discontinuity, If we still apply an exponential law to '

1

v(r/Rp) = Vp =—————
) ¢ (r/Rz)n

the exponent n should grow indefinitely for r — Ry.

If we accept the value of { ~ .5 for a sharp-edged orifice and
for the length b = 0, as all engineering handbooks propose, an average
value for

2 + K2
[o}

n = ——2
K2
[o]

will be obtained. For a vena contracta in a confined space, the pressure
in the separation bubble is lower than in the atmosphere, tending to
increase the contraction coefficient, K,. According to figure 2, a value
of Ky = .8 is more appropriate than Ko ~ .62, which is the value for a

jet issuing from a flat-plate orifice into the atmosphere. With the value
of X, = .8, the exponent becomes n = 4,125, which seems to be reasonable,
We choose n = 4,0, and the expression for the integral term becomes
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ITI, THE ANALYTIC REPRESENTATION OF THE DISCHARGE COEFFICIENT
AND OTHER FLOW AND ATMOSPHERIC PROPERTIES

An analytical investigation of the rather complex flow problems
requires that the various coefficients of discharge, pipe friction, and
the atmospheric properties, such as pressure and density, as a function
of altitude, be represented in closed form, or given as tables. For
efficiency, a closed analytical form of representation is favored.

A. Discharge Coefficient

The discharge coefficient deviated remarkably from unity pri-
marily because of the contraction of the streamlines. The streamlines
curve or converge as they approach the orifice opening, bend around the
edge of the hole and continue to curve and converge beyond the orifice,
At some distance from the plane of the orifice, the het has a minimum
section at which the streamlines are parallel. Because of the friction,
the actual jet velocity in the orifice is less than the ideal jet veloc-
ity based on isentropic flow. A combination of these two factors is the
discharge coefficient. The coefficient increases substantially as the
result of compressibility as shown in Figure 2. 1If orifices are built
into a pipe, the discharge coefficient depends also on the diameter ratio
of the orifice and upstream pipe [5]. With orifice-to-pipe diameter
approaching one, the constriction of the flow disappears, and the dis-
charge coefficient will also attain the value of one (Figure 3).

Another important parameter is the Reynolds number formed by
the orifice diameter and approach velocity., For small Reynolds numbers
below 200, the discharge coefficient K decreases markedly as can be seen
in Figures 4 and 5. Leak flows fall definitively into this region,

Some of the curves in Figure 2 represent the free jet; i.e.,
the jet discharging into still air. (These curves are obtained from
References 1 and 3.) A dependence on the aspect ratio for square open-
ings is noticeable. For comparison, the discharge coefficient of a
circular sharp edge orifice is also drawn. For the pressure ratio,
Pex/P, approaching one, the coefficient has approximately the value of
the theoretical calculations of the vena contracta of about K, =~ .6 -
.61 by Treffts and .58 by Garabedian - [5]. The coefficients for two-
and three-dimensional flow are probably the same. However, since the
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combined effect of friction and contraction is plotted, the difference
can be attributed mostly to the first effect. The compressible jets
have a higher curvature at the orifice [11], thus increasing the minimum
cross section of the jet far downstream of the orifice,

For the subprogram, the discharge coefficient K, was approxi-

mated as

exp(Pex/Pi) - exp(-Pex/Pi)
Ko =1, - 155 exp '3'5(Pex/Pi>> = +5186 exP(Pex/Pi) + exP("Pex/Pi) ,

(84)

which gives a fair value over the range 0 = Pex/Pi s1

Figure 3 shows the change of the discharge coefficient obtained
from Reference 5. At d/D = 1, the discharge coefficient is K, = 1,
decreasing monotonically with d/D as predicted by theory to the value of
K, = .6, the discharge coefficient of an orifice cut into an infinite
wall, The theoretical value is obtained at approximately d4/D = ,23;
then gravity effects become probably more pronounced for liquid jets.
A fair approximation is given by the expression

K = .6+ .4 exp {-(5.5 - %) a - %)}. (85)

In Figure 4 the discharge coefficientsfor plate orifices are
drawn [10], showing the influence of the Reynolds number for various
orifice-to-pipe diameter ratios. The Reynolds number is formed with
the diameter and the approach velocity.

The discharge coefficients for close-clearance orifices are
drawn in Figure 5 for various Reynolds numbers obtained from Reference 6.
The Reynolds number is here defined as

il
H (86)

Re = Au ?
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where the hydraulic radius is given by

- area of flowing fluid ,
RH wetted perimeter

For a radial clearance, C, over flow length, L, approaching zero, the
discharge coefficient for all Reynolds numbers decrease. For C/L 21,
the coefficient is only a function of the Reynolds number,

A general approximate expression for K/K, as a function of C/L
and R, (Figure 5) is given by

<1 _ o~ 788 NCTL

KLo (a + n ln R). (87)

The constants differ for different Reynolds numbers and are given by:

1 <Re =100 a=.,02 n = ,1867
100 < Re = 500 a = .52 n = ,0782
R, > 500 a=1.0 n= 0,

(The hump in the cueves at low C/L and high Re numbers is not considered
in these expressions.)

The coefficient K, can be set equal to .62 without considering
any effect of the outside flow.

When the jet issues into the outside stream, flowing normally
to the jet axis, a furtherdrop of the discharge coefficient is expected.
In Figure 6 the discharge coefficient ratio, K/Ko, is drawn for an
orifice [1] of aspect ratio 1 and for three different free stream Mach
numbers over the mass flow rate ratio (m; K,/mK). A definite influence
of the free stream Mach number M can be observed. In Reference 1 the
test was conducted with orifices of different aspect ratios and shapes
cut into a wall placed tangentially to the outer flow field. At the
position of the orifice, the boundary layer was relatively thin., With
thicker boundary layer flow regions in the vicinity of the orifice, the
discharge coefficient K should be somewhat improved. Further tests are
necessary in this area.
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For the venting problem, a mean representative curve was derived,
Its expression is

Xn miKo pviKo
n K=o T (88)
(1 - X)E + X o R

fo T - ]

X .
KO

where n = 4,5714 and E = ,0l0l representing the curve for M = 1 closely.

To calculate the proper discharge coefficient, it is necessary
to determine the absolute viscosity of the discharging gas. In general,
the viscosity, u, is a function of the pressure and temperature. How-
ever, as the pressure and thus the density of the gas decreases, the
absolute viscosity approaches the low density limit and the pressure
dependence becomes less, For most gases, this low density limit is
reached at a pressure of about one atmosphere. Since the pressure in
the compartment is about one atmosphere at the beginning of venting and
decreases further with time, we consider therefore only the temperature

‘dependence.,

The dependence of the viscosity on the temperature, obtained
from Reference 4, is plotted in Figure 7 as a mineral plot of all gases.
It gives the relationship between the reduced viscosity, pg = p/uc, the
reduced temperature, Tp = T/T, with the reduced pressure P, = P/P. as
parameter; po, Te, and Pg are the critical viscosity, temperature, and
pressure, respectively, of the particular gas under consideration.

Experimental values of . are seldom available. However, ¢
may be estimated in the following way:

b = 7.7 W/ p2/2 g1/8 % 1077 (KRg/m secl, (89)

where P is the critical pressure in atm (Kg/cm®) and T, is the critical
temperature in °K.

The dependence of ug on T, is in general

b = (@ TR, (90)
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where the constants are for the regions

Ty S 1.5 a = ,442 n = ,9882
1.5 < Ty S 2,0 a = ,462 n = ,8204
2.0 < Tp S 3.0 a = ,500 n = ,6480
3.0 < Tg 5.0 a = .564 n= .,5185
5.0 < T, 10.0 a = ,631 n = ,5099.

B. The Atmospheric Properties

For the calculation of the atmospheric properties of air, the
formula and constants of Reference 9 were used. However, the rather com-
plex expression for the acceleration due to gravity was further approxi-
mated by

2
- a
g-gom+..., (91)

where a = 6,378,178 meters is the radius of the earth for the geographic
latitude @ = 45° and z is the height above the earth's surface. The
geopotential altitude becomes then

s
(]

f -85; az. (92)

Integration yields

j= o]

fl

[+
— 1

2 ] (93)

a+z

A comparison of the values obtained by this rough formula with the values
of Reference 9 showed an error of 3 meters for an altitude of z = 70,000
meters, Other properties are obtained by the following formulas:
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Pressure
g

T
b T, +L (H- H)

M
o0

Ry,

for L& #0

or
o Hoh
P = Pb exp | = TFr— |» for Lé = 0,
mb
Density
MP
o = =
R Tm

Temperature

Speed of Sound

(94)

(95)

(96)

(97)

(98)

In these equations the subscript b designates the respective values at

the base of the sublayer. The constants for all layers are

9.80665 m/sec

]
]

2
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28,9644 Kg/K mol

8.31432 Joules (°K)~*/mol.



The constants for the different sublayers are

H=0 +11 Km

L' = -6,5; T
m

b = 288.15°K; H_ = Om; P, = 1,013250 x 105Newton/m?

b

H=11

g

L& = 0; = 216,65°K; H = 11000 m; P, = 2.26320 x 102 mb

Tub b

'H= 20 + 32 Km

! = . = . = R =
Hn 1; Tmb 216.65°K; Hb 20000 m; Pb 5,47487 x 10 mb

H=32 + 47 Km

L' = 2.8; = 228,65°K; H = 32000 m; P, = 8.68014 mb
m

Tmb b

H=47 + 52 Km

L' = 0; = 270.65°K; B = 47000 m; = 1,10905 mb
m

Tmb Pb

H=52 + 61l Km

Lé =-2; T, = 270.65°K; H = 52000 m; P, = 5.90005 mb, etc.

C. The Friction Factor

In the equations for pipe flow, the friction factor, £, appears;
accurate numerical values for this factor will be needed for the solution
of engineering problems which require information on energy loss. Notice
that f is an experimental coefficient usually determined by energy losses,
the length and diameter of the pipe, and the velocity.

Nicuradse [10] conducted systematic tests, using measurable
roughness produced by uniform sand grains of diameter e. Through the
use of such artificial roughness, he was able to show that the friction
factor depended upon Reynolds number and the relative roughness e/d (Fig-
ure 8). 1In this diagram the friction factor, f, is already the total
value for a pipe of length, L. The Reynolds number therefore uses the
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total length, L. At high Reynolds number and high relative roughness,
the friction factor becomes wholly a function of the relative roughness,
e/d. Colebrooh and White [1l0] were able to correlate the results of
many laboratory tests on commercial pipes over a wide range of Reynolds
number and roughness by the following expression:

1 d 9.28
—— - 2logio T = 1.14 - 2logipo [1 + * = }. (99)
NoE ¢ R_(e/d) VaE

However, care must be taken in defining relative roughness. For instance,
if a pipe has a definite '"regular'" roughness, like a wavy wall and other-
wise a smooth surface, then the curve would show a pronounced tendency to
vary with the Reynolds number and a friction factor for a hydraulically
smooth pipe has to be taken.

For a fully developed velocity profile, i.e., at distances
from the pipe inlet greater than 50 diameters, no significant effect of
Mach number was observed. The pipe Reynolds number is given as

Re = Vo D g/u.

For short pipes near the duct inlet, the one-dimensional analysis is
misleading, since the velocity profile is not yet fully developed and
changes in momentum flux of appreciable magnitude may occur. At the
entrance, the flow is rather similar to the flat-plate flow, and the
Reynolds number based on the flow length from the inlet is more important.

36



Leak Comp 1
Comp 1

Comp 2 V,:0
Ve =0 SNdo o P Ty

PeipeiTe —_—r
’ t

v

eak Comp 2 {
VAN 7
\ CYATEEEA AN
U
PciP.

a) COMPARTMENTS IN SERIES

'} L4

¢) SUDDEN CONTRACTION

FIG. 1. SCHEMATIC OF POSSIBLE CONFIGURATIONS

37




10

R 1

O

Circular
orifice

2 -
0 2 4 6 8 1.0

P[P

FIG. 2. DISCHARGE COEFFICIENT
AS A FUNCTION OF COMPRESSIBILITY

Contrection Coefficient, k

1.0 —
\ J—
i
9 N . D _—_——;Lg -
1 \N\ Ref. 5 s i
s \ b4
A\, N
7 W
’ TN ~d _Upper Limit
-~ \ -~ -
6 Lower Limf T~ JTo——u Tt = =
R ] >

0 9 8 7 €& 5 4 3 2 4 0
Orifice Diem/Pipe Diem, ¢/D

FIG. 3. DISCHARGE COEFFICIENT AS A FUNCTION OF
ORIFICE-TO-PIPE DIAMETER




-0.595
+0.794

(77

~n

o

i
0 20 40 60 80 400 120 140

Vvily

FIG. 4. DISCHARGE COEFFICIENTS FOR THE PLATE ORIFICE

K = - ﬁ--'— C radial clearance
T Y
'o {w—L —ee | flow length L
' 10,000
Ry = 20,000 §,000
2,000
8 4 K ve (D=-¢)/2L for soncontris oritiens,
. aerrew slits, capillery heles, ead labyriathe
| ::o L1 | 1
.6 , (;—_‘
100
4 'J
/ﬂ
0

1.0 9.2 1.4 1.6 1.8 2.0
( radial clearance ) /( flow length)

FIG. 5. LEAK DISCHARGE COEFFICIENT AS A FUNCTION OF
REYNOLDS NUMBER AND RADI AL CLEARANCE TO FLOW LENGTH

o
~
>
3
@™

39



43"*

1.2
Me 5.7
Lo~ 1T ~~
10"~
1.0 l;—g_—.::g::-
/ 1.3
. /
.6 l
/ /
/ /,’
/Y
4 Y/
) /4
y 9’
Y
/4
2 /fl
/,
/
0 -
0 2 4 6 8 10
m K,
m, K
FIG. 6. VARIATION OF DISCHARGE COEFFICIENT

WITH MASS FLOW RATIO

40




Rozucod Viscosity, u,=p/p, Ref. 4

20
JLiquid
{0
8 \\
° \
4 \\ Donse Ges
W\
hno.-anu \ 10 /
gion
2 Z
Y 4
3
10 3
8 Criticel Poin /
' 1
8 X0
[ o.zZ
.‘
/ “Low Donsity Linit
2 -
4 6 8140 2 4 6 8 10
Reduced Temperature, T, = T/T,
FIG. 7. REDUCED VISCOSITY (g, = p/A,)

AS A FUNCTION OF TEMPERATURE FOR SEVERAL VALUES OF

THE REDUCED PRESSURE /ﬁ, :I/l‘./

41




05

Relative
Roughness, ¢/D

v 05

)

- y \\ —— ()2
3 < 01
2 004

A S
\ —— 001

AN 0004

T N> 0001

'-.0@005

103 104 108 108 107 !ﬂhw.
SRy

Roughness of pipe is measured by ¢, and has
typical values as follows (after Moody):

Pipe & ft
Drawn tubing .000005
Commercial steel .00015
Asphalted cast iron .0004
Galvanized iron .0005
Cast iron .00085
Concrete .001-.01
Riveted steel .003-.03

FIG. 8. FRICTION COEFFICIENT VERSUS
PIPE REYNOLDS NUMBER FOR
INCOMPRESSIBLE, FULLY DEVELOPED FLOW
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TABLIE 1
CRITICAL PROPERTIES

Molecular Critical Constantsh.¢.¢
Substance Weight  la
M T, Pe v, He I
°K) (atm) (em? g-mole?) | (g emsec?) (cal sec-tem=! ° K-Y)
x 10 x 10%
Liyht elements:
H, 2016 333 12.80 65.0 347 _
He 4.00) 5.26 2.26 57.8 25.4 —_
Noble gases:
Ne¢ 20.183 44.5 26.9 41.7 156. 792
Ar 39.944 151, 48.0 75.2 264, 71.0
Kr 83.80 209.4 54.3 92.2 396. 49.4
Xe 1313 28Y.8 58.0 118.8 490. 40.2
Simple polyatomic
substances:
Air 28.97 132, 36.4 86.6 193. 90.8
N, 28.02 126.2 33.5 90.1 180, 86.8
0, 3200 154.4 49.7 74.4 250. 105.3
0, 48.00 268. 67. 89.4 — —_
CcO 28,01 133. 34.5 93.1 190. 86.5
CO, 44.01 304.2 729" 94.0 343, 122,
NO 30.01 180. 64. 57, 258. 118.2
N,0 44.02 309.7 71.7 96.3 332, 131,
SO, 64.07 430.7 77.8 122, 411, 98.6
F, 38.00 — — - —_ —
Cl, 70.91 417, 76.1 124, 420. 97.0
Br, 159.83 584, 102. 144, —_ —_
I, 253.82 800. —_ —_ —_ —
Hydrocarbons:
CcH, 16.04 190.7 45.8 99.3 159. 158.0
C.H, 26.04 309.5 61.6 13, 237. —
C,H, 28.05 282.4 50.0 124, 215. —
C,H, 30.07 305.4 48.2 148, 210, 203.0
C,l, 42.08 365.0 45.5 181. 233. —
C,H, 44.09 370.0 42.0 200. 228. —
n-CH,q 58.12 425.2 37.5 255. 239. —_
i-CHH,, 58.12 408.1 36.0 263. 239, —
n-CH,, 72.15 469.8 333 31, 238, —
n-C iy 86.17 507.9 29.9 368. 248, —
n-C;Hy, 100.20 540.2 27.0 426. 254, —_
n-C,H,, 114.22 569.4 24.6 485. 259,
1-CyH,q 128.25 595.0 225 543. 26S. —
Cyclohexane 84.16 553. 40.0 308. 284. —
C.H, 78.11 562.6 48.6 260. 312. —
Other organic
compounds:
CH, 16.04 190.7 45.8 99.3 159, 158.0
C13,Cl 50.49 416.3 65.9 143, 338. -
CH.Cl, 84.94 510. 60. - — -
CHCl, 119.39 536.6 54, 240, 410, —
ca, 153.84 556.4 450 276. 413, -
C,N, 52.04 400. 59. - —_ -
Cos 60.08 378. 61. — - —
CS, 76.14 552, 78. 170, 404, —_




PRECEDING PAGE BLANK NOT FILMED);

APPENDIX

PREPARATION OF THE INPUT DATA FOR THE DIFFERENT VENTING PROGRAMS

A. Venting of Compartments in Series

The simple discharge of a number of compartments in series is
calculated with this program. The single compartments are connected by
only one orifice. The first compartment, which vents into the atmosphere,
can have more than one discharging orifice. For all compartments the
possibility of leak flow is provided, with the restriction, however that
only one leak per compartment can be handled.

All input data are read in by the INPUT subroutine. Floating-

point numbers have the Format E15.8 and fixed-point numbers have I3. The
data in consecutive order have the following meaning and dimensions.

NH, NP, MPRNT, NPO

NH = Fixed-point number, designating the number of trajectory
data cards.

NP = Fixed-point number, designating the number of cards for
the pressure data outside of the leaks of the compartments.

MPRNT = Fixed-point number for printing out check data. MPRNT
greater than zero for print out,

NPO = Number of cards for the pressure data outside the

orifices of the first compartment. The first compart-
ment vents into the atmosphere.

oM, TC, PC, GC, G

oM = Molecular weight of the vented gas.

TC = Critical temperature of the vented gas in [°K].

PC = Critical pressure of the vented gas in atmospheres
[Kg/cm®].

GC = Gas constant of the vented gas [m/°K].

G = Specific heat ratio of vented gas.
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TT(I), HT(I), FMT(I) NH times, maximum NH = 40

TT(I)
HT(I)

FMT(I)

= Trajectory time in seconds,

= Trajectory altitude in meters m at time TT(I).

Trajectory Mach number at time TT(I).

FM(J), CPF(J,1), CPF(J,2), ... NP times, maximum NP = 40

FMF (J)

CPF(J,I)

FMO(I), CPO(I,1),

FMO(I)

CPO(I,J)

NO, NT, N, NOR

NO

NT

NOR

46

Mach number for which the pressure coefficients
CPF(J,I) are selected. It is not necessary that
this Mach number correspond to the FMT(I) mentioned
above. Both, however, must be in the same range.
It is recommended that more points be selected in
the transonic range.

Pressure coefficients of the leaks, outside the com~
partment. If more compartments are to be vented,
other cards must be added and the dimensions in the
COMMON statements must be changed accordingly.

CP0O(I1,2), ... NPO times, maximum NPO = 40

Mach number for which the orifice pressure coefficients
COP(I,J) are selected.

Orifice pressure coefficients of the first compartment
outside the compartment.

Fixed-point number, designating the first time step
minus 1 second.

Fixed~point number, designating the end time step
minus 1 second.

Number of compartments in series also total number of
leaks; one leak per compartment,

Fixed-point number; number of orifices of the first
compartment venting into the atmosphere,



AO(I), G1(I), OML(I) NOR times

AO(I) = Area of outside orifices of the first compartment
[m3].

Gl(I) = Mass flow through orifice number I of the first
compartment [Kg sec/m].

OM1(I) = Mach number of orifice flow.
For the very first time step, insert a zero for Gl(I) and OM1(I). After

NT time steps, the QUTPUT subroutine will punch all cards beginning with
the fixed-point numbers NO, NT, N, NOR and later.

A(I), Vvo(I), R1(1), P1(I), AMI1(I)
AL(I), HR(I), CCF(I) N times

A(I) Orifice area of the orifices connecting the compart-

ments [m3].

VO(I) = Volume of the i-th compartment [m3].
R1(I) = Initial density of the gas in the compartments
[Kg sec®/m%],
P1(I) = Initial pressure of the gas in the compartments in

[kg/m®].
AM1(I) = Initial mass flow out of the compartment [Kg sec/m].

Leak area of the compartments (representative mean
value) [m2].

AL(I)
HR(I) = Hydraulic radius or mean radius of leaks defined in
III.A [m®].

CCF(I) = Radial clearance over flow length of the leaks
according to Figure 5.

The program can be restarted at any time step NT. The punched data

replace the old corresponding data. The program punches for NT a fixed-
point number. It can be changed to any other value NT 2 NO.

47




B. The Input Data for the Venting Program with Pipe Flow

In this program, the pipe replaces the first compartment. Some
of the input data have been changed. The format statements remain the
same as Iin A. We repeat here also those symbols which have not changed.
NH, NP, MPRNT

Fixed-point numbers with the same meaning as in A.
oM, TC, PC, GC, G

Same meaning as in A.

TT(I), HT(I), FMT(I), QT(I) NH times, maximum NH = 40

Same as in A. For the program with pipe flow and heat addi-
tion the term QT(I) 1is added.

QT(I) = Total heat flux per unit mass of gas [Kg m/sec].
FMF(I), CPF(I,l), CPF(I1,2), ... NP times, maximum NP = 40

Same as in A,
NO, NT, N

Same as in A,

A(1l), HR(1), PL(1), R1(1), P1(1)

A(l) = Cross section of the pipe [mZ].

HR(1) = Hydraulic radius of pipe [m].

PL(1) = Pipe length [m].

R1(1) = Initial density of the gas in the pipe [Kg secZ/m*].
P1(1l) = Initial pressure of the gas in the pipe [Kg/mZ].

These data have been added to the original program.
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A(I), VO(I), RI(I), P1(I), AMI(I)
AL(I), HR(I), CCF(I) N-1 times

Same as in A,

W = additional loss coefficient of the pipe as bends and elbows,
etc, If no additional losses, enter zero.

C. Description of the Iteration Subroutine

This subroutine determines the next iterated pressure at the
entrance of the pipe joining the upstream compartment. For subsonic
exit Mach number the pressure at the exit has to match the external pres~
sure. For this case the entrance pressure is varied according to a cer-
tain iteration scheme until the condition of equal pressures at the exit
is met. For supersonic pipe flow the exit is choked and the pipe exit
pressure is higher than the external pressure. Further expansion of the
flow takes place external to the pipe.

In the subroutine the first trial value of the entrance pressure,
which is determined in the main program by an extrapolation of entrance

pressures occuring at an earlier time step. This pressure causes a
certain exit pressure and exit Mach number, calculated by the subprogram
PIPE. This program determines also an entrance Mach number which corre-
sponds to a choked exit. The pressure difference across the exit

&P = Pooit = Poxit o 8nd the Mach number difference at the entrance

AM= Maner = Moner Moy = 1) is listed according to whether M,  1s smaller
than one (0K = AP) or equal to one (0G = AP), To obtain the second value

of Péizr, the first one is perturbated by a fraction of the pressure
difference (Pch - Péng)’ schematic Al. AP and MM is again listed. The

next improved value is obtained by extrapolating the first and second
approximation to make AM at the entrance of the pipe equal to zero. If
M has reached the tolerance, a logical decision is made. For AM = Tol
and AP < 0 the pipe exit is not choked and the condition AP = 0 must be
sought. This condition is met by extrapolating PK (for which My, < 1)
to OK = AP = 0. 1If, however, M = Tol and P 2 0, the condition of choked
exit flow is met within the tolerance.

49



AP

P“ )

pl®)  Sonic

pla) Branch
Subsonic

Bronch

& P

SCHEMATIC A-1. SOLUTION FOR
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PROGRAM VENT

VENTING OF COMPARTMENTS IN SERIES

46 96 36 3¢ I 3 I W W 3t I W I W W I W 3 I W W I W I I W W MWW W I W W W W

NOR =NUMBER OF ORIFICE OF THE FIRST COMPARTMENT
NPO = NUMBER OF CARDS OF PRESSURE DATA OUTSIDE OF ORIFICE
NH = NUMBER OF CARDS FOR TRAJECTORY DATA

N =NUMBER OF COMPARTMENTS»ALSO NUMBER OF LEAKS

ONE LEAK PER COMPARTMENT
PIPE IS CONSIDERED AS COMPARTMENT NOs 3

HT = ALTITUDE AT TIME TT IN METERS
FMT = MACH NUMBER AT TIME TT

A = ORIFICE AREA BETWEEN N COMP.IN METERS

"VO = VOLUME OF COMPARTMENTS IN METERS3

CPF= PRESSURE COEFFICIENT AT MACH N

A = AREA OF NV ORIFICES OF COMPs 1 IN METERS

P = PRESSURE IN COMPARTMENT IN (KG/M2)

CMl= COMPARTMENT MACH NUMBER

ALl= LEAK MASS FLOW

R = DENSITY OF N COMPe IN KGe'SECe/M&

AL =LEAK AREA OF COMP«N IN METERS _

HR =HYDRAULIC RADIUS OR MEAN RADIUS IN METER

TC = CRITICAL TEMPERATURE OF GAS

GC = GAS CONSTANT OF GAS (M/DEGeK)

PC = CRITICAL PRESSURE OF GAS IN ATM(KG/CM2)
OM = MOL WEIGHT OF PARTICULAR GAS

CCF= RADIAL CLEARANCE OVER FLOW LENGTH
Wl =ADDITIONAL LOSS COEFFICIENT FOR PIPEs IF NONE ENTER O
IN PROPER FORMAT
NUMBER 1 COMPes IS THE COMPe THAT VENTS INTO THE ATMOSPHERE

AM1l = MASS FLOW OUT OF THE COMPARTMENT
Gl = MASS FLOW OUT OF ORIFICES OF THE FIRST COMPARTMENT
PG = PRESSURE OUTSIDE OF THE ORIFICES OF THE FIRST COMPARTMENT

COMMON MPRNT » NORsNPO
COMMON NHsNsNTosNPsGCoOMsTCoPCoGoTT(40) sHT(40) sFMT(40) s FMF(40) sWsNO
COMMON CPF(4095)sA{5) sHRIS5) sPLIL1)sVOIS)sAL(5)sCCFI5)sPALIS)IPZIL)
COMMON P1{5)sR1(5)+AM1(5)sT1sCM1I(5) sALL(5)+GL(5)90OM1(5)
COMMON P2(5)sR2(5) sAM2(5)9T2sCM2(5) 9AL2(5)+G2{5) s0OM2(5)
COMMON PG(5)sCPO(4095)9FMO(40)sA0(5) sPAYTAIRAICAIALTIFMIWH(4095)
COMMON TP(40)sOP(40) sWM(40+95)
DO 5 I=145
AM1(1}=040
5 AM2(1)=1.0E=07
CALL INPUT
D={2e¢/(G+1le) ) ¥%#{(G/(G=10))}
DO 13 I=NO#NT
Il=]=~1
Tl=ll
T2=T1=140
CALL TRAJ
IF(I=1)491l1lr4
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4 DO 15 L=1+40
IF{MPRNT=4)24924+25
25 WRITE(614555)
WRITE(61990)L sMPRNT
IF(L=1)63697
DO 8 K=1sN
AM1 (K} =aAM2(K)
DO 20 K=1sN
IF(K=1)1sly2
CONT INUE
CALL PARTB(IsKslsD)
GO TO 23
2 CONTINUE
CALL PARTA{lsKslLsD)
23 WHIL»K)=R1(K=1)
20  WM{LsK)=AM1(K)
IF(L=1)1091049
9 DO 3 K=1lsN
IF(MPRNT)18+18919 .
19 WRITE(61991)KsWMILK) sWM{L=19+K)
18 IF(ABS{WM{LIK)=WM{L=19K)}=140E=07)3+3410
3 CONTINUE
GO TG 12
10 IF(MPRNT)21s21s22
22 WRITE(61990C)LsLsAMI(1)sAML(2) sAML(3) sAM1(4)
21 IF(L=3)154161416
16 DO 17 K=3sN
17 PLIK=1)=WH(LsK)=(WM({LsK)=WM({L=1sK)} )% {WH(LIK)=WH(L=1sK))/(WM(LsK)=-
12 0%WM{L=14K)+WM(L=23K) )
15 CONTINUE
GO TO 12
11 DO 14 [P=1,yN
CM1(IP)=+040
14 ALL(IP)=+040
12 CALL OUTPUTI(I)
WRITE(61+555)
13 CONTINUE
STOP
555 FORMAT(1HO)
90 FORMAT(2144+8E15.8)
91 FORMAT(I495E1548)
END

~Now o
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SUBROUTINE PARTALLsKoLaD)
VENTING OF COMPARTMENTS IN SERIES

27

33

28

54

35

62

30

22

80
99

DIMENSION T(40)0(40)
COMMON MPRNT s NORsNPO

COMMON NH’N.NToNPoGCoOMoTC9PC9G’TT(40)vHT(#O)’FMT(40),FMFQQQ)’WSNO
COMMON CPF(4035)sA(5) sHR(5)9PLI1)sVOI(5)sAL(5)9CCF(5)sPAL(5)PZ(1)’

COMMON P1(5)sR1(5)sAM1(5)sTL1sCML(S) sALL(ST4GL(5)s0OML(5)
- COMMON P2(5)sR2(5) vAM2{5)+sT2+sCM2(5) »AL2(5) +yG2(5)9+OM2(5)

COMMON PG(8)sCPO{40¢5) «FMOL40) 2AO(S5) vPAITAIRAICASALTsFMoWH (4045

TE1)=P2(K)*e999

Kl=K+1

DO 30 M=1+40

Al=(Pl(K=1})+P2{(K=1))/240
RI(K)=R2(K)*((TI(M)/P2(K))**{1e/G))

CALL APPT{(K2AlsRLIK)»T(M) oA (K)rsA&sD)
IF(AL(K))2T79274+33

AL1(K)}=040

GO TO 28

21=PA/T(M)

CALL LEAK{Z1sT{M)sRL(K)sAL(K) sDsHR(K)IsCCF(K)sALL(K))
S1=R2(K)*¥VO(K)
S2={2¢0%{T(M)/P2(K))=1e0)¥#%(1le/G)
$3=51%(140~52)+AM1(K1)=ALL1(K)
CMX2=240%{(T(M)/AL)*¥%( (G=1e)}/G)=1e0)/(G=16)
CM1(K)=SQRT (ABS(CMX2))

IFICMLI(K)=1e40)696s7

CM1(K)=140

O(M)=A4=53

IF(M=1)54954435

T(M+1)=T(M)*1.005

GO TO 62
T(M+1)=sTIMY=O (M) ¥(T(M)=T{(M=1))/(0O(M)=0(M=1))
PlL(K)=2s0%T (M+1)=P2(K)

AM1(K)=S3

IF(ABS (O(M))=10E=07)22+30+30

CONTINUE

WRITE(614+99)

IF(MPRNT )4 9445
WRITE(61980)IsKsboMeDsT(M)sPLIK)3S390(M)eRI(K)
RETURN

FORMAT (4144+6E1548)
FORMAT(17H PARTA TOLERANCE)
END
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12
13
10

11

15
14

54

UBROUTI PARTB

VENTING OF COMPARTMENTS IN SERIES

DIMENSION T(40)s0(40)sD0(40)»TO(40)

COMMON MPRNT»NORNPO -

COMMON NHsNoNTosNPsGCoOMesTCoPCoGrTT(4O) sHT(40) oFMT(40) s FMF(40) s WeNO
COMMON CPF(4095) 9A(5) sHR(5) sPL(L1)9sVO(5) s AL(5)2CCF(5)»PALIS) sPL(1)
COMMON P1(5)sR1(5)sAML{5)9TLeCML(5) sALL(5) 9GL1(5)sOM1(D)
COMMON P2(5)3R2(5)+sAM2(5) »T2sCM215) sAL2(5)+G2(5)9sOM2(5)
COMMON PGI5) 9CPOI4098) yFMO(40) sAQ(5) sPASTAIRAICAIALTIFMIWH(4098)
COMMON TP(40)+s0P(40) sWM{40+5)

T{L)=P2(K)#*,999

Kl=K+1

DO 30 M=1440

RI(K)=R2(K)}#((T(M)I/P2IK) ) **({1e/G))

SUM=,.0

DO & J=1sNOR

CALL APPT(JsPGIJ)ISR1I(K)I»T(M)sAO(J)sA4sD)

Al=PG(J}/T(M)

CALL COEF(AlsAK)

AOM=RA*FM*CA

Y=AK

DO 3 Jl=1,30

TotJld =y

IF(A1=D)1ls192

Al=D

RIZRI(K)I*#(ALl**#(14/G))

Al=SQRT(ABS(G*T (M) %*R1(K)) )’

VI=AI*SQRT(ABS({2e%(lo=Al¥%( (G=1,)/G))))

AIM=RI*VI*AK

X=AIM/ (AOM*Y)

CALL VENTC(XsAKsY1l)

DO(J1l)=Y1l=Y

IF(J1=2)8+899

Y=695%AK

GO T0O 12
Y=TO(JL)=DO(JL)*¥(TO(J1)=TO(J1l=1))/(DO(J1)~DO(J1=1))
IF(MPRNT=4)10910s13
WRITE(61981)JsJ1sTO(JL)sYsDO(JL)sYLrAleDoeX
IF{ABS(DO(J1))=140E=08)1191193

CONTINUE

Gl(J)=A4*Y/AK

SUM=SUM+G1l(J)

CMX2=2e0% ((T(M)/PG(U) ) %% ((G=1e)}/G)=140)/(G=14)
OM1(J)=SQART (ABS({CMX2))

IF(MPRNT=3)144914415
WRITE(61380)JsMeKsJLsALlsAK»ALsOM1(J) oGLl{J) s T(M)
IF(OM1(J)=1e0169697

OM1(J)=1e0

CONTINUE

IF(AL(K))2T7927+33



27
33

28

54
35
62
30
22
80

99
81

AL1(K)=040
GO TO 28
Z1=PA/T(M)

CALL LEAK(Z19T(M)oR1I(K)sALIK) sDsHRIK )} sCCF(K)2ALL(K))

S1=R2(K)*VOI(K)
S2x(2e0%(T(M)/P2(K))=1s0)%%(1e/G)
$3aS51%(1,0=52)+AM1(K1)=AL1(K)
O(M)=SUM=53

[IF(M=2)54954935

T(M+1)=T(M)*1,005

GO TO 62

TIM+L)=T (M) =O(M)*(T(M)=T(M=1))/{0(M)=0(M=1))
PLIK)®24O%T (M+11=P2(K)

AM1(K)=S3

IF(ABS (O(M))=1s0E=Q07122+30+30
CONTINUE

WRITE(61999)

FF (MPRNT)414+5

WRITE(O6L980) I sKoLoMsTIM)»PLIK)#S390(M)9»R1(K) sSUM

RETURN

FORMAT(41497EL1548)
FORMAT(17H PARTA TOLERANCE)
FORMAT(214+8E15.8)

END
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SUBROUTINE TRAJ

PA=AMBIENT PRESSURE

TA=TEMPERATURE

RA=DENSITY

CA=SPEED OF SOUND

PALl(N)=PRESSURE OQUTSIDE PIPE AND LEAKS AT TIME T1
DIMENSION W1(40)

COMMON MPRNT s NORNPO

COMMON NMININTsNPyGCIOMITCIRPCHIGoTT(GO) sMT (4O sFMT(40) s FMFI40) s WeNO
COMMON CPF(40+5)Y9A(5)sHR(5)sPLIL) s VO(S)sAL(5)sCCF(5)9sPALIS)IPZI{])
COMMON Pl(5)sR1(5)sAML(5) sT1sCML(5)»AL1(5)9GL(5)sOM1(5)
COMMON P2{5)sR2(5)+sAM2(5)+T2sCM2(5) 1AL2(5)+GC2(5)9s0OM2(5)
COMMON PG(5)sCPO(4095) sFMOL40)2»AO(5) sPAsTASRASCAIALTIFM
CALL INTER(LsNHololoTToeHTsT1leALT)

CALL INTER({1sNHslslsTToFMTsT1eFM)

DO 1 I=1sN

DO 2 J=1sNP

Wl{J)=CPF(Jsl)

CALL INTER(1sNPslsleFMFeWlsFMePAL(I))

CONTINUE

HG=ALT#*#6¢378178E+06/(6e3781T7BE+06+ALT)

CALL ATMOS(HGsPAsTAsRAsCA)

DO 3 I=1sN

PAL(] )=PA+RA*PAL(II*¥( (FM*CA)*#2) /240

DO 4 I=1yNOR

DO 5 J=1sNPO

Wl(J)=CPO(JsI)

CALL INTER{1sNPOs1lslsFMOsW1lsFMsPG(I))

CONTINUE

DC 6 I=1sNOR

PGII)=PA+RA®PG(I)*®( (FM*CA)#%2) /240

RETURN

END
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§¥BROQT!NE INP%T
VENTING O MP MENTS IN SERIES

NP = NUMBER OF CARDS FOR PRESSURE DATA OUTSIDE THE LEAKS
NH = NUMBER OF CARDS FOR TRAJECTORY DATA
NPO = NUMBER OF CARDS FOR PRESSURE AT ORIFICE
FMO = MACH NUMBER FOR PRESSURE DATA QUTSIDE THE ORIFICE
CPO = PRESSURE COEFFICIENT OUTSIDE THE ORIFICE
AO = ORIFICE AREA
PG = PRESSURE OQUTSIDETHE ORIFICE
COMMON MPRNTsNORsNPQO
COMMON NHeNINTsNPsGCoOMaTCoPCoGoTT(4O)9HTI40) oFMT(4LO) yFMF(40) sWeNO
COMMON CPF(4045) 9A(5) sHR(5)sPLIL)9VO(5)sALIS)ICCFI5)»PALIS)PZ(1)
COMMON P1l(5)sR1(5)92AM1(5)sT1sCM1(5)9ALL(5)9GL(5)9sOM1(5)
COMMON P2(5)9sR2(5)sAM2(5) 9T29CM2(5) sAL2(5)9G2(5)s0M2(5)
COMMON PG(5)sCPO(4095) sFMO(40)sA0(5) sPA»TAIRASCAIALT I FMIVHI%C095)
READ(603s100)NHs NP s MPRNT sNPOQ
READ(60s101)OMs TCHPCHGCH G
VC=Te7T#SQRT (OM)I ¥ {(TCH% (=]14/6e ) ) #(PCH*(2,/34))%)1e0E=~07
WRITE(61s126)GCsOMyTCHPC
WRITE(61+128)VC
DO 1 I=1sNH
1 READ(609101) TTU(I)sHT(I)sFMT(I)
DO 2 J=1sNP
2 READ(603101)IFMF{J)sCPF(Jsl) s CPF(J92) sCPF(J93)sCPF{Jsé)
DO 3 I=1sNPO
3 READ(60s101)IFMO(1)sCPO(I»1)sCPO(192)9sCPO(I93)sCPO(I1r4)
READ (609 100)NOsNTsNsNOR
WRITE(61+130)
DO 4 I=1sNOR
READ(60+101)A0(I)sGL{I)H»OMLI(])
OM2(1)=0M1(1)
G2(11=G1(1)
4 WRITE{619124)19A0(])
WRITE(61+108)
DO 5 [=1sN
READ(605101) A(I)sVO(I)sR1I(I)sPLII) sAMI(])
READ(60+101) AL(I)sHR(I)+CCFII)sALLI(T)
R2(I1)=R1(1I)
P2(I)=P1l(1I)
CAL2(I)=ALL(T)
AM2 (I )=AM1Y (1)
WRITE(613125)Is A(TI)sVO(I)sRL(I)eP1I(I])
5 WRITE(619127) AL(I)sHR(I)SCCF(I)
AM2 (N+1)=40 )
AM1(N+1)=.0
WRITE(61+108)
RETURN
124 FORMAT(12H ORIFICE NReI&496H AREA E15e895H (M2))
130 FORMAT(31H ORIFICE DATA FIRST COMPARTMENT)
101 FORMAT(5E15.8)
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100 FORMAT(913)
128 FORMAT(15H CRIT«VISCOSITYsEL134696H KG/MS)

126 FORMAT(11H GAS CONST+9E134695H M/OKs7H MOL We9EL13e699H CReTEMPosEL
136693H OK»9H CRPRESe9EL134694H ATM)

127 FORMAT(22H LEAK AREAYEL5¢893H M2910H HYDReRADeEL134692H
1 My16H RADCLEAR/FLebLoe2EL1346)

125 FORMAT(9H COMP«NResI3910H ORIF¢AREAIELS5¢893H M295H VOLesELSe893H M
13+8H DENSITYsE15e898H KGS2/M4sTH PRESe E15e896H KG/M2)

108 FORMAT(1MO)
END ‘
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ROUTINE OUTPUT(IN

VENTING OF COMPARTMENTS IN SERIES

COMMON MPRNT s NORSNPO

COMMON NHINSNTINPsGCIOMsTCHPCrGoTT(4O) o HMT(40) s FMTL4L0) 9FMF{40) sWIND
COMMON CPF(4095)9A(5) sHR(5)sPLIL1)YoVO(5)2AL(5)2CCF(B)sPALIB) sPL(]L)
COMMON P1l(5)sR1L{(B)sAMLI5) s TLsCMLIB) »ALL{5)sGL(5)9s0OML(5)

COMMON P2(5)sR2(5) sAM2(5) 9sT2sCM2(5) sAL2(5)9G2{(5)9s0OM2(5)

COMMON PGI5)+sCPO(40s5) sFMO(40) sAD(5) sPAYTAIRAICAIALTIFMIWH(4U5)
COMMUN TR(&40) »OP(40) sWM(4045)

WRITE(6195CIT1

FORMAT(11lH TIME El245)

WRITE(6L960)ALTsFMIPAITAIRA

FCRMAT(11H ALTITUDE El2e5911H MACH NRe E12e5911H AMBePRo El2e5
lellH AMB+TEMP El2e¢5911H AMBeDENS E12¢5)

DPN=Pl(1)=PA

[=1
WRITE(61s61)IsPL{L)»R1I{L)DPNsAMLI(1)
FORMAT(12H COMPARTMe [3519H PRESSURE E1245911H DENSITY

l E12¢5911H PRESeDIFFeEL126¢5911H MASS FLOW El2e5)
WRITE(61965)PA1(1)sALL(L)

FORMAT (34K LEAK PRe El2e5911H LEAK MeFLJEL
125)

DO 8 I=1sNOR

PRR=P1(1)/PG(])

WRITE(6L1966)11+PG{I)»GLII)sOML({I)»PRR

FORMAT (15H ORIFel3s16H ORIFePRESeEL2e5911H MASS FLOW
1 E1245911141 ORIFeMeNReEL245911H PRESeRATIOEL245)
OO 1 I=2sN

DPN=P1(1)=PA
WRITE(61963)IsPL(TI}sRLITIYsCML(T)sAML(T)
WRITE(61964)PAL{I)sALLI{T)2OPN

FORMAT (12H COMPARTMe I3s19H PRESSURE E1245+11H DENSITY
1 E1245511H MACH NR El2¢5511H MASS FLOW El1245)
FORMAT (34H LEAK PRe E1l2¢5911H LEAK MsFLWE1L

12¢5911H PRES«DIFFeELl265)

IFCINT=NT) 49646

NOLl=NT+1

NT1=120

WRITE(62380)INOLsNT1sNsNOR

DO 9 I=1sNOR
WRITE(62+81)A0(TI)sGlUI)sOML(I])

DO 2 I=1sN
WRITE(62s81)A(I)sVO(T)»R1I(I)sPLII)sAMLI(])
WRITE(62s8L)ALIT) sHR(TIISCCF(TI)sALL(T)
DO 3 I=1»N

AM2 (T )=AM1(])

[F{INT=1)159795

AMZ2{1)=AM1(])+1+0E=06

p2tli=PLl{I)

R2(1)=R1(1)

59



60

10

80
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CM2{1)=CM1LT)
AL2(1)=ALLLT)

AM2(N+11=040

AM1 (N+1)=040
Pl{l1)=4995#P1 (1)
DO 10 I=1sNOR
G2(I1}¥=Gl(1I)
oM2([)=0OM1{ 1)
RETURN
FORMATI(9I3)
FORMAT(5E1548)
END



20

ROUTINE APPT(KsPX922+234249A44D)
CALCULATES LOW N

COMMON MPRNT s NORSNPO

COMMON NHsNINToINP sGCIOMITCIPCH»G
Al=PX/Z3

CALL COEFTAlsAK)

IF(AL1=D)343+4

A2=AK*SQRT (2.,%23%#22)%24

A2aA2R (ALl#%(14/G))

A3=Al¥%( (Gml,e)/G)

IF(A3=14)54646

A4=A2%#SQRT (G#(1le=A3)/(G=14))

GO TO 20

A4==A2%S5QRT (G*ABS (le=A3)/{G=1,))
GO TO 20

A2=AK*Z4#SQRT (2e%#23#22)
AGz=A2%((2¢/(G+1e ) )%*(1e/(G=1e)))*SQRT
RETURN

END

> ONIC IN COMPARTMENT APPT.

(G/(G+1e))
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mMOoOOND>PN

PC
TC

oM
A4

UBROUTINE LEAK(Z19sAsBsCoDIEIRCFIA

LCULA NIC IN ORIFICE.
PRESSURE RATIO» EXTERNe TO INTERNe PRESSURE
INTERN.PRESSURE

INTERNWDENSITY

CLOSE CLEARENCE ORIFICE AREA

SPEC

HEAT RATIO

DISTINGs VALUE FOR CHOKING
HYDRAULe RADIUS
CRITICAL PRESSURE OF GAS
CRITICAL TEMPe OF GAS
GAS CONSTANT FOR PARTe GAS.
MOL WEIGHT OF GAS
MASS FLOW THROUGH CLOSE=CLEAR ORIFe
COMMON MPRNTsNORNPO
COMMON NHsNsNTINPsRGsOMsTCoPCHG
VC=T7e 7T#SQRT (OM)*(TCh¥(=1e/6e ) ) H(PCHH{24/34) )%#1e0E=07
CALL COEF(219AK)
IF(Z1-D)2s2s1
A2=AK#SQRT (24%A%B)#C
A2=A2%(Z1*%(1./G))
A3=21%%( (G=14)/G)
IF(A3=1e)394494
A4=A2%SQRT (G#(1le=A3)/(G=1e))

ze=]

GO T0 5

A4==A2%SQRT (G*ABS (le=A3)/(G=1.))

L==1

GO TO 5

A2=AK*C*SQRT (2 *A%B)
A4=A2%((2¢/(G+le) ) %% (1a/(G=10s)) ) *SQRT (G/(G+1s))

L=1

T=A/(B*RG*9.78035)
CALL VISC(TsTCsVCrAMU)

RE=ABS

(A4nE/ (C*AMU) )

CALL CLEAR(REsRCFsY)

Ab=A4Y

CALL COEF(Z1lsX)

Ab=AL*X
RETURN

END
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10

12
11

§UBROUT§HE ATMOS(HGsP» TR C)
AM=28.9644
RS=847.8118
A=6378178,
GU=9.80665

GA=1l.4
IF(HG=11000e)10292
PB=10332.3
TPu=645/1000.
TM=288415

HB=0.

GO 70 10
IF(HG=20000e¢)3944
PB=2307.83

TP=0s

TM=216465
HB=11000,

GO TO 12
IF(HG=320006154+696
PB=558¢283
TP=1./1000,
TM=216465
HB=20000.

GO TO 10
IF(HG=47000s) 79848
PB=884513
TP=248/1000.
TM=228465
HB=32000.

GO TO 10
IF{HG=52000¢)9+13413
PB8=11.309
TM=270465
HB=47000¢

TP=0e

GO TO 12

PB=6e¢0164
TM=270.65
HB=52000,
TP==24/1000.
A=ALOG(TM/ (TM+TP*{HG=HB) ) )
P=PB#EXP (AM*A/ (RS*TP))
GO TO 11

P=PB#EXP (=AM*(HG=HB)/(RS*TM))

T=TM+TP* (HG~HB)
R=AM*P/ (RS*T#G0)
C=SQRT (GA*RS*GO*T/AM)
RETURN

END
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SUBRQUTINE INTER(NsMyNNsMNpXoYsXS9YS)
DIMENSION X(50)sY(50)9XS(140)sYS(140)9AL(D)

DO 1 I=NNsMN

DO 2 L=NM
IF{XS({I)=X(L))39292
CONTINUE

L=M

Li=L
[IFILLI=N=1)&r&4 5
L1=N

GO TO 8
IF(L1=-M+1)63697
Ll=L1=2

GO TO 8

L1l=M=3

L2=L1+3

0O 9 J=L1lsL2
I1l=J=L1+1

AL(II)=1a

DO 9 LP=L1sL2
[J=LP=L1+]
IF(II=1J111s911
ALCTII)I=ALITII)I*(XS(I)=X(LP))/Z(X{(J)=X(LP))
CONTINUE

SUM =0.

DO 10 [P=L1sL2
Il=1P=L1+1
SUM=SUM+AL(I])*Y(IP)
YS(1)=SUM

RETURN

END



w N

uB T
TR=T/TC
IF(TR=145)19192
Al=e442
AN=,9882
GO TO 9
[F{TR=2¢)349394
Al=e462
ANz ¢ 8204
GO TO 9
IF(TR=34154546
Al=e5
AN=46480
GO TO 9
IF{TR=5¢)737s8
Al=e564
AN=45185
GO TO 9
Al=4631
AN=,5099
A= (A1%#TR) **AN
A=A*V(C
RETURN
END
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w N

IF{RE=100e) 19192

A=.02

AN=41867

GO TO 5

IF{RE=500e13934

A=e52

AN=,0782

GO TO 5

A=140

AN=0

Y=(A+AN*ALOG(1le+RE) ) ¥ (le~EXP (=4+788#SORT (RCF)))
RETURN '
END

BROUTINE 2 AK
CON=1.0
AB=Al
IF(AB=1e)19192
AB=le./Al
CON==1.0
A=EXP (AB)
B=le/A
C=EXP (=3.5%AB)
AK=(1em=el55#C=¢5186%(A=B)/ (A+8))*#CON
RETURN
END



RO
$=4,5714285
"U=e0101
W= X##5
QG=W/({{le=X)*U+W)
Y=AK#*Q
RETURN
END
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v

H
F

~No o0

PROGRAM VENT
ENTING THROUGH A PIPEs NO HEAT ADDITION
T340 303096000300 363639 96 I I 9B 30 HE B S
NH = NUMBER OF CARDS FOR TRAJECTORY DATA
N =NUMBER OF COMPARTMENTS»ALSO NUMBER OF LEAKS
ONE LEAK PER COMPARTMENT
PIPE 1S CONSIDERED AS COMPARTMENT NOe 1
T = ALTITUDE AT TIME TT IN METERS
MT = MACH NUMBER AT TIME TT
A = ORIFICE AREA BETWEEN N COMP.IN METERS
VO = VOLUME OF COMPARTMENTS IN METERS3
CPF= PRESSURE COEFFICIENT AT MACH N
A = AREA OF NV ORIFICES OF COMP« 1 IN METERS
P = PRESSURE IN COMPARTMENT IN (KG/M2)
CM1l= COMPARTMENT MACH NUMBER
AL1= LEAK MASS FLOW
R = DENSITY OF N COMPs IN KGeSECe/M4
AL =LEAK AREA OF COMPeN IN METERS
HR sHYDRAULIC RADIUS OR MEAN RADIUS IN METER

TC = CRITICAL TEMPERATURE OF GAS

GC = GAS CONSTANT OF GAS (M/DEGeK)

PC = CRITICAL PRESSURE OF GAS IN ATM(KG/CM2)
OM = MOL WEIGHT OF PARTICULAR GAS

CCF= RADIAL CLEARANCE OVER FLOW LENGTH
Wl =ADDITIONAL LOSS COEFFICIENT FOR PIPEs IF NONE ENTER Oo
IN PROPER FORMAT
NUMBER 1 COMPe IS THE COMP. THAT VENTS INTO THE ATMOSPHERE
COMMON MPRNT
COMMON NHoNsNTsNP3sGCsOMsTCoPCoGosTT({40)sHT(40) s FMT(40) s FMF(40) s WHNO
COMMON CPF (40395 )9A(5) sHR(5)IsPLI1)aVO(5)IsALIB)sCCFRI5)9PALISYPZ(])
COMMON PLl(5)sR1(5) sAML(5)sT1sCMLI(5)sALL(5)
COMMON P2(5)3sR2(5)9AM2(5)»T2sCM2(5) sAL2(5)}
COMMON WH(40+5) o TP(40) 20OP (40) »EPSERIEMIEMXsPAITAIRAICAIALTIFM
COMMON WM{4045)
DO 5 I=1s5
AM1(I)=040
AM2(1)=1.0E=07
CALL INPUT
D=(2e/(G+)a) ) %#(G/(G=1s))
DO 13 [=NOsNT
Il=1=1
Ti=11
72=T1l=140
CALL TRAJIALT+FMsHGsPAsSTAsRAsCA)
IF(I=1)491194
DO 15 L=1+40
IF{L=1)6+6s7
DO 8 K=1sN
AM1 (K)=AM2(K)
DO 20 K=2sN



<

14
12

13
555

90
91

IF(K=2)19192

CONTINUE

CALL PARTB(KslLo 1)

GO TO 23

CONTINUE

CALL PARTA(I+KsL D)
WHLsK)=P]l(K=1)

WM(LsK)=AM1 (K)

IF(L=1)10+10+9

DO 3 K=1N

JF(MPRNT) 18918919
WRITE(61491)IKaWM{LIK) sWM{L=19K)
IF(ABS(WM{LK)=WM(L=13K))=1e0E=07)393,10
CONTINUE

GO TO 12

IF(MPRNT 21921922
WRITE(61990)LsLsAML(L1)sAM1(2) 9AML(3) sAM1(4)
IF(L=3)15916916

DO 17 K=3sN

PlLIK=1)=WH{L oK) ={WM(L oK) =WM{L=1sK) ) ¥ (WHILIK)=WH{L=~19K))/(WM{LsK)=
12¢0#WM{L=1sK)+WM({L=29K))
CONTINUE

GO TO 12

EM=0.0

EMX=0.0

DO 14 [P=1sN

CM1(IP)=+0.0

ALL(IP)=+0.0

CALL OUTPUT(])

WRITE(61+555)

CONTINUE

STOP

FORMAT (1HO)

FORMAT(21448E1548)
FORMAT(1495E15.8)

END
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33

28

54

35
62

3
90

1

30

22
5
4

80
99

70

; PART » )
DIMENSION T(41)0(4l)
COMMON MPRNT
COMMON NHaNsNTsNPsGCosOMaTCoPCoGryTT(40) sHTI&4O) o FMTL4O) s FMF(40) sWeNQ
COMMON CPF(4O95)'A(5)’HR(b)’PL(l)9V0(5)oAL(5)bCCF(b)ppA.(b)OPZ(l)
COMMON P1l(5)sR1(5)sAMLIID) sTLsCML(5)»ALL(5)
COMMON P2{5)sR2{5) 2AM2(5)sT2sCM2(5) »AL2(5M
COMMON WH{409s5) s TP(&A0) sOP(40) vEPYERIVEMIEMXIPASTASRAICALALTFM
TEL)a(P2IK)4PL(K)) /20
Kl=X+1
DO 30 M=1+40
Al=(Pl({K=1)+P2(K=1)1/2.0
RI(KI=R2(K)*{(T(M)/P2(K) ) *¥(1le/G))
CALL APPT(KsAlsRI(K)»TIM)sA (K)sA4sD)
IF(ALIK)I2T7927933
AL1(K)=040
GO TO 28
21=PA/T (M)
CALL LEAK(Z1sT(M)sRLI(K)2AL(K) »DsHRIK) sCCFIK)2ALLII(K))
S1=R2(K)*VQOI(K)
$52={2e0%(T(M)/P2(K) I =1a0)%%(1e/G)
$3=51%(1e0=S2)+AML(K1)=ALL(K)
CMX2=2 0% {(TI(M)/AL)*¥%( (G=1e)/G)=1e0)/(G~10)}
CM1(K)=SURT(ABS(CMX2))
IFICMLIIK)I=1e0169697
CM1(K)=1e0
0(M)=A4~=53
IF{M=1)54+54435
TI{M+1)=T(M)*]1,005
G50 TO 62
TIM+L)I=T(M)=O(M)*¥(T(M)=T(M=1))/(0{(M)=0(M=1))
Pl{K)=20%¥T{M+1)=P2(K)
AM1(K)=53
IF(MPRNT=2)1s1+3
WRITE(61990IMaTIM)sAlsA4sAIK) »ALLIK) 90523539 T(M+1)
FORMAT(I3s8E1548)
IF(ABS (O(M))=10E=07)22+30+30
CONTINUE
WRITE(61999)
IF(MPRNT ) 49445
WRITE(61+80)IsKsLoMsDsT(M)sP1(K)sS350(M)sR1(K)
RETURN
FORMAT (4[4 96EL158)
FORMAT(17H PARTA TOLERANCE)
END
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12
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14

13
17

Y
@ = ® Y

BROUT PART
N N PM({41)

COMMON MPRNT

COMMON NHsNsNToNPsGCrOMs TCoPCoGoTT(LO0) sHT(40) o FMT(40) oFMF(40) 9 WoNO
COMMON CPF (40951 9A(5) sHR(5)sPL{1)}sVO(S)sALI5) sCCF(5)2PALID)sPZ(1)

COMMON P1(5)sR1{5)sAML(5)+T1sCM1{5)sALL(5)
COMMON P2(5)9sR2(5)sAM2(51+T2sCM2(5) 9AL2(5)

COMMON WH(4095) s TP{40)s0OP(40) +EPIERIEMIEMXsPASTAIRAICAIALTFM

COMMON WM{I40,45)

K=Kl=1

NU=0Q

NS=0

DO 1 L=1440

IF(MPRNT=1)242+910

WRITE(614555)

WRITE(61+100)LsK

IF(L=2)63345

PM{L)=P1(K1l)

GO TO 5

PM{L)=¢998%PM(L=1)

PLIK1)=PMI(L) _
TL=P1(K1)/(R1(K1)*#GC*#9,.8)

CALL ENTR({KsSV)

PM{L)=P1(K1)

AM]1 (K1) =AM] (K)

HPO=EM

TLTL/{1le+(G=14)¥EM *EM /2,)

CALL FRICT{AMI(K ) sA{K)STLsFRsVISIRN)
FF=G*(FR¥PL(K)/ (2e*HR(K) ) +W)

CALL PIPE(FF+sCE»SVIHPIGLIM)
IF(MPRNT=1)119s11s12
WRITE(6149100)LsKsL1LsPI(K)IEPSEMIEMX»PALIK) »AMI(K) 9AMLIK1) oHP
WRITE(61+100)LsK1sL1sPL(K1)sR1I(KL)sP2(K1)sP2(K)
DE=P1(K)=PAl(K)

DEM=HPO=HP i
CALL ITER(NUSNSsPM{L)»DE»DEMsPM{L+1) sMSB¥MSO)
IF(MPRNT=1)13413,14
WRITE(619101)LsKsAMLI{KL1) sPMIL) +sPM(L+1)sDEDEM
IF(EMX=14)179767

IF(MSB)4y8s4
IF(ABS(DE)=(1.0E=O8%P1(K1)))8s8s1
IF(DE+(240E~08%¥P1(K1)))}19949
IF{ABS{DEM)=1,00L=07)8+8+18

[IF{(MSQO) 19891

CONTINUE

WM{L1sK)=AM1(K)

WM(L1+eK1)=AM1 (K1)

CM1(K1l)=EM

CM1 (K ) =EMX

IF{MPRNT)15+15416
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101
100
102
555
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WRITE(619102)L1sLsMSBIMSOsAML(K)sP1(K1)sP2(K1)
RETURN ‘

FORMAT(214+6E1548)
FORMAT(31448E1548)
FORMAT(414+8E1548)
FORMAT (1HO)

END



SUBROUTINE INPUT
COMMON MPRNT

COMMON NHsNsNTsNPsGCsOMsTCosPCrGoTT(40) sHT(40) s FMT(4L0) s FMF(40) sWeNO

COMMON CPF (4055} 9A(5) sHR(I5)sPLIL) VOIS 2AL(5)sCCF(5)9PALIS)»PLZ(])

COMMON Pl(5)sR1(5)+sAMI(5)sT1sCML(5)ALLLS)

COMMON P2(5)9sR2(5)+sAM2(5)sT2sCM2(5)sAL2(5)

COMMON WH(4095)9TP(40)sOP(40)»EPIERIEMIEMX9IPAITAIRAICASALT I FM

-READ(609100)NMsNPsMPRNT

READ(609101)10MsTCrPCHGCHG

VC=T7 e T#SQRT (OM)I# (TCH#(=1e/60) ) ¥ (PCh%(24/36))%1s0E=07

WRITE(619126)GCsOMsTCoPC

WRITE(61s128)VC

DO 1 I=1lsNH
1 READ(60s101) TT(I)sHTL{I)»FMTI(I)

DO 2 J=1lNP
2 READ(60s101)FMF{J) »CPF(Jsl)sCPF(Js2) sCPF(J93)9CPF(Jrd)

READ({60+100)NOsNT»N

WRITE(61+130)

READ(60+101) A(1)sHR(L)»PL(L)R1(1)»P1(1)

WRITE(619124)A(1)sHR{L}sPLILI

WRITE(614+108)

DO 5 [I=2sN

READ(60101) A(I)sVOUIIsR1I(I)sPLIT)}»AMI(I)

READ(605101) AL{I)sHR(I)sCCF(I)sALL(I)

R2(I)=R1(1)

P2({1)=P1(1I)

AL2{T)=ALL(])

AM2 1 T)=AMY( )

WRITE(619125)1s A(I)sVO(I)sR1I(IIPLI(])
5 WRITE(619127) AL{TI}9HR(I)sCCF(I])

AMZ(1)1=AM1(2)

EP=P1(2)

ER=R1(2)

READ(60s101)W

WRITE(61s108)

RETURN

124 FORMAT(10H PIPE AREA»E1548910H HYDReRADesE1548+8H PIPE LesE15e8)
130 FORMAT(13H PIPE SECTION)

101 FORMAT(5E1548)
100 FORMAT(913)
128 FORMAT(15H CRIT<VISCOSITYsE13e696H KG/MS)
126 FORMAT(11H GAS CONSTe9E13e695H M/OKs7H MOL VWesEL13e699H CReTEMP4sEL
13¢6633H OK9s9H CRePRESe3sE134694H ATM)
127 FORMAT(22H LEAK AREA9E15¢893H M2s10H HYDReRADeE13e692H
1 Msl16H RADCCLEAR/FLebLe9EL1346) '
125 FORMAT(9H COMPeNRe9I3310H ORIFeAREAIE154893H M295H VOLe9E156893H M
1398H DENSITY2E154898H KGS2/M4sTH PRESe E15e896H KG/M2)
108 FORMATI(1HO)
END
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SUBROUTINE OUTPUT({INT)
COMMON MPRNT

COMMON NHsNsNTsNPoGCsOMsTCoPCoGo TT(40) sHT(40) 9 FMT(40) s FMF(40) sWHNO
COMMON CPF{401+5)9A(5) sHR(5)sPL(1)9sVO(5)sALI5)+CCF(5)9PALIS)PPZ(L)
COMMON P1(5)sR1(5)sAM1(5)sT1sCML(5)+AL1(5)

COMMON P2(5)9R2(5)sAM2(5)+T2+CM2(5)9AL2(5)

COMMON WH(40+5) s TP(40) sOP(40) sEPYERIEMIEMX9PAITAIRAICAVALTIFM
COMMON WM(40s5)

WRITE(61950)T1

FORMAT(11H TIME El245)

WRITE(61960)ALTsFMsPASTASRA

FORMAT(11R ALTITUDE El2e5+11H MACH NRe E1l2¢5911H AMB4PRe El12.5
1911H AMBeTEMP E1245+11H AMBeDENS El245)
WRITE(61961)EPsERSEMsAMLI(1) )

FORMAT (34H COMPARTM. PIPE ENTRePRe E12¢5911H ENTReDENSSEL
1265911H ENTReMaNReEL12e5911H ENTReMeFLeEL245)
WRITE(61462)P1(1)sR1(1)9sEMXsAMLI(1)

FORMAT (34H EXIT PRe E1l2e5911H EXITeDENS EI
12e¢5911H EXIT MeNReE12e5911H EXIT MeFLsE1265)
DO 1 I=2sN

DPN=P1(1)=PA
WRITE(61963)1+PL{I)sRICI)IsCMI(T)»AMLI(I)
WRITE(61964)PAL(I)sALL(1)»DPN

FORMAT(12H COMPARTMse I3419H PRESSURE E12e5911H DENSITY
1 E12459+11H MACH NR El245911H MASS FLOW El245)
FORMAT (34H LEAK PRe E12e5911H LEAK MeFLJEL

1245911H PRESeDIFFeEL1245)

IFCINT=NT) 49696

NOl1=NT+1

NT1=120

WRITE(62980)NO1sNT1sN
WRITE(62981)A(1)sHR(1)sPLI1)9R1I(1)sP1(1)
DO 2 [=2sN
WRITE(62s81)A(I)sVO(I}sR1L(I}sPI(I)sAMLI(I])
WRITE(62+81)AL(I)sHRIT)sCCF(IIsALL(])
WRITE(62981)W

DO 3 I=1sN

AM2(T)=AMLIL])

IF({INT=1)54795

AM2 (1)1=AM1(I)+10E=-0Q6

P2(1)=PL(1])

R2(I)=R1(1I)

CM2(1)=CM1(])

AL2(T)=AL1(])

AM2 (N+1)=0.0

AM1 (N+1)=040

EP=e99%*EP

RETURN

FORMAT(913)

FORMAT(5E1548)

END
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UBROUTINE APPT(KsPX922323s243AbsD)
CALCULATES IF FLOW IS SONIC OR SUBSONIC IN COMPARTMENT APPTe
COMMON MPRNT
COMMON NHosNsNTsNP»GCrOMsTCePCs G
Al=PX/23
CALL COEF{AlsAK)

IF(AL1=D) 3334

A2=AK*SQRT (2.%23%#22)%24
AZ=A2® (AL##(14/G))
A3=A1#%( (G=1e)/G)

IF(A3=14)536+6

A4=A2%SQRT (G*(le=A3)/(G=14))

GO TO 20

A4==A2%SQRT (G¥ABS (le=A3)/(G=14))

GO TO 20

A2=AK#Z4*SQRT (24%23%22)
A4=A2%((24/(G+1le) ) %%#(1e/(G=1e)) ) *#SQRT (G/(G+14))

[F(ALl=1e)191ls2
IF(AG) 19198
Ab==A4
RETURN
END
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{ sAsBICIDIEIRCFIAL)
CALCULATES IF FLOW IS SONIC OR SUBSONIC IN ORIFICE.
PRESSURE RATIO» EXTERNs TO INTERNe PRESSURE
INTERNSPRESSURE
INTERNCDENSITY
CLOSE CLEARENCE ORIFICE AREA
SPECs HEAT RATIO
DISTINGs VALUE FOR CHOKING
HYDRAULe RADIUS
CRITICAL PRESSURE OF GAS
CRITICAL TEMPe OF GAS
GAS CONSTANT FOR PART. GAS
MOL WEIGHT OF GAS
A4 MASS FLOW THROUGH CLOSE-CLEAR ORIF.
COMMON MPRNT
COMMON NHsNIsNTsNPsRGsOMs TCoPCHG
VC=T7e T*SQRT (OM)I*¥(TCH*¥(=14/60e) ) ¥ (PCH*(24/36))%*1e0E=~07
CALL COEF(21sAK)
IF(Z1-D)292>1
1 A2=AK#SQRT (2e%A%g)*#C
A2=A2%(Z1%%(1e/G))
A3=21%%((G=1e)/G)
IF(A3=1e)3044
3 A4=A2%SQRT (G*(1le=A3)/(G=1l4))
L=~-1
<GO TO 5
4 A4z==A2%SQRT (G*ABS (1le=A3)/(G=1l.))
L==1
GO T0 5
2 A2=AK#C#SQRT (2e%A%*B)
A4=A2%((2e/(G+1a ) ) ¥*¥% (1 e/ (G=1e) ) )#*SQRT (G/(G+1le))
L=1
5 T=A/(B¥RG¥*¥9.78035)
CALL VISC(T»TCsVCsAMU)
RE=ABS (A4#E/(C*AMU))
CALL CLEAR(REsRCFsY)
Ab=A4Y
CALL COEF{(Z1lsX)
Ab=A4%X
RETURN
END

—~OMmMOONE PN
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SUBROUTINE PIPE(FFsVXsEVIHIGLIM)
H = ENTRANCE MACH NUMBER R CHOKED FLOW EMX=1

EM

=MACH NUMBER AT ENTRANCE OF PIPE,

EMX=MACH NUMBER AT EXIT OF PIPE

G

FF
EP
ER
Pl
VX
EV
R1

13

35
10

11
15

34

RATIO OF SPEC. HEAT

PIPE FRICTION FACTOR

PRESSURE AT ENTRANCE

DENSITY AT ENTRANCE

=PRESSURE AT EXIT

= VELOCITY OF SOUND AT EXIT

= VELOCITY OF SOUND AT ENTRANCE
DENSITY AT EXIT

DIMENSION D(4l1l)sX(4l)

COMMON MPRNT

COMMON NHoNINTosNP»GCrOMsTCoPCoGeTT(40) sHT(LO) s FMT(40) 9 FMF{40) 9 WeNO

COMMON CPF(4095)9A(5)sHRIDS)»PL(1)sVO(D)sALIS)sCCF(DIsPALIS)IPZ(1)
COMMON P1(5)sR1(5)sAML{5)sTLsCML(5)sAL1(5)
COMMON P2(5)9R2(5)sAM2(5)9sT2sCM2(5) sAL2(5)
COMMON WH(40s5)»TP(40) sOP(40) sEPsERIEMIEMX
IJd=1

Gl=(G+1le)/2s

G2=(G=1e)/2s

B=EM#*2
A2=FF=(1e/8)=G1*ALOG(ABS(B/(1l.+G2%B)))
Al==1.+G1l*ALOG(G1)

IF(A2=A1)8+13+13

EMX=1e

1J=2

D{l)=1,

GO TO 10

D(l)=X1

DO 34 I=1+40

GO TO(1s2)s1J
Z1=ALOG(B*(1e+G2%¥D(I))/(D(I)*(1e+G2%B)))
X1l=1le/(1le/B=FF+G1l%*21)

X(I)=X1=D(1)

EMX=SQRT (ABS(D(I1)))

F=EMX%%2

GO 710 11
Z1=ALOG(ABS(D(I)*G1/(1e+G2%D(]))))
X1={le/(le+FF=G1%Z1))

X{I)=X1=D(I)

H=SQRT(ABS(D(I11}))

IF(I=1115415+7

D(2)=e1

GO TO 34
DUI+1)=D(I)=X{I I ¥(D(I)=D(I=1))/(X(])=X(]=1))
IF(ABS(X(1))=1e0E=0816+6+34

CONTINUE

GO 7O 35
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6 GO TO(21s14)s1J
1J=2
GO TO 8
IF(EMX=14117934+3
XX=1e+G2*F
XY=14+G2%B
PLI1)=EP*SQRT (ABS(B*XY/(F*XX)))
VX=EV*SQRT(ABS(XY/XX))
RL(1)=ER*SQRT(ABS (B¥XX/ (F*XY)))
Z1sH+H
Xl=1e+G2%21
X2=14+G2*B
GLIM=G*EP*SQRT(Z1*X1/ (B*X2) ) *H*¥A (1) / (EV*SQRT ( X2
GO TO 4
Bl=H*H
XX=1e+G2¥B1
XY=1e+G2*B
EP=EP/SQRT(BL*XX/(B*XY))
ER=ER*SQRT(B*XX/ (BL1*XY))
EV=EV*SQRT ( XY/XX)
Pl{1)=EP*H*SQRT (XX/G1)
VX=EV*SQRT(XX/G1)
R1(1)=ER¥H*SQRT(GL/XX)
EM=H
GLIM=G*EP*H*A(1) /EV
RETURN
END

/X1))
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UTINE (NYsNSsPMyDEsDEMy PM )
DIMENSION DPX(40)»AMA(40) +sDPE(40) »AMB(40)

COMMON
COMMON
COMMON
COMMON

MPRNT
NHsNsNTsNPsGCoOM9TCHPCoGo TT(40) sHT(40) s FMT(40) s FMF(40) s WaNO
CPF(40+5) 9A(5) sHR(B5I9PLIL)9VOIS) sALI5) »CCF{B)2PALIB)»PL(1)
PL{S)sR1{(5)+sAML{5)sT1sCM1(5)sALL(D)

COMMON P2(5)sR2(5)sAM2(5)+sT29sCM2(5) sAL2(5)
COMMON WH{40+5) s TP(40}sOP(40) yEPIERsEMIEMX
MSUB= i

MSON=1

IF(EMX=1e)193+3

NU=NU+1

ANY=NU

DPX{NU)=DE

AMA (NU) =PM

IF{NU=2)61252

AA=ABS (AMA(NU)}=AMA(NU=11))

[IF{AA=140E=~07%P1(2))9912s12
PM1=AMA(NU)=DPX (NU) * (AMA (NU)=AMA(NU=1))/(DPXINU)=DPX{(NU=1))

GO T0 5

MSUB=0

IF(ABS(DE)=(1+0E=07%P1(2)))8s8y15
[F(ABS(DEM)=2.0E=06)16+16+8

MsUB=1

EMX=1.0
NS=NS+1

ANS=NS

DPE(NS)=DEM

AMB (NS) =PM

IFINS=2)8s4s4

AB=ABS (AMB(NS)=AMB(NS=1))
IF(AB=1«0E=O7%P1(2}))13s14+14

MSON=0

GO TO 8

PM1=AMB(NS)=DPE(NS)* ({AMB (NS)~AMB(NS=1))/(DPE(NS)=DPE(NS=1))

IF{(PM]~

AMB(INS) 10911910

PM1=AMB(NS) *(ANS+0.,010)/ANS
[F(ABS(DEM)=1.0E=06174+795
IF(DE+140E=07119595
PM1=(PM+P2(2))/240

GO TO 5

PM1=,9995%PM

RETURN
END
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SUBROUTINE ENTRIKsSV)
AMl= MASS FLOW FROM UPPER COMPARTMENT

Pl
R1
G

A

EP
EM
ER
SV

MEAN PRESSe OF UPPER COMPARTMENT =TOTAL PRESSURE
MEAN DENSITY OF UPPER COMP. » TOTAL DENSITY

SPECe HEAT RATIO

PIPE AREA

PRESSURE IN PIPE ENTRANCE (MEAN)

' MACH NUMB« AT ENTRs OF PIPE

DENSITY AT ENTRe OF PIPE

VELOCITY OF SOUND IN THE ENTRANCE

COMMON MPRNT

COMMON NHsNsNT sNPsGCsOMsTCosPCsGyTT(40) sHT(40) 9FMT(40) s FMF (40) oW sNO
COMMON CPF(40s5)9A(5) sHR(5)sPL(1)9VO(5)sAL(5) 9CCFI5)sPAL(5) sPZ(1)
COMMON P1(5)sR1(5)sAM1(5)sT1sCM1(5) sALL(5)

COMMON P2(5)sR2(5) sAM2(5) sT2+CM2(5) sAL2(5)

COMMON WH(4055) 9 TP(40) sOP(40) »EPSERIEMIEMXsPAsTASRASCAsALT s FM
D=(2e/{G+1e) ) %%({G/(G=10))

KlasK+1

DO 2 I=1,10

IF(AL(KL))11s11912

AL1(K1)=40

GO TO 13

21=2240%PA1(K1)/(P2(K1)+P1(K1l))

TM=(P2(K1)+P1(K1))7240

CALL LEAK(Zl.TM,Rl(Kl)9AL(K1).D.HR(KI).CCF(KI).ALl(Kl))
S1=R2(K1)*VO(KL1)
AM1(K)SAML(K1+1)=ALL(K1)+S1%(le=((P1(K1)/P2(K1))**{14/G)))
RI(K1)=R2(K1)*(le+{(AMI(K1+1)=ALL{KL1)~=AM1(K))/S1)

AO={ (AML(K)/A(K))*%#2)/(G*PL(K1)#R1(K1))

B=4+73958%G

Al=(2 e ¥A0¥B=16)/(Gm1le=2+*B*B#A0)

A2=(2eXA0)1/ (G=1e=2.%B*B*A0)

FMP=A1+SQRT (ABS(A2+A1%Al))
RPT=(1le+(G=1s ) #FMP/24)%%(G/(1le=G))
PT2=P1(K1)/(RPT*(1s0+B*FMP))

PTR=140/(RPT#{1s0+B¥FMP))

EP=RPT*PT2
ER=R1I(K1)*¥PT2%((Lle+(G=le ) ¥FMP/24 ) %% (1e/(Le=G)))/P1(K1)
EM=SQRT (ABS (FMP) )

SV=SQRT(ABS(G#EP/ER))

IF(PTR=14)636s1

IT(AO=(160+G)/(2e0%((1e+B)*%2)))34341
PLIK1)=(PL(K1)+P2(K1})/2.0

CONTINUE

IF({MPRNT=2)49445
WRITE(615100)PTRyFMPsSVsEPSERsAL»A0sPLIKL)

RETURN

FORMAT(8E1548)

END



NONO NN

SUBROUTINE FRICT(Y»ACsTsFRsAIR)

DIMENSION F(al)

COMMON MPRNT

COMMON NHsNsNTaNP»GCrOM»TCoPCHG
=MASS FLOW

AC =PlPE AREA

=GAS TEMP,

TC. =CRITs TEMP.
VC =CRITe VISCe
FR =FRICTION FACTOR

-~ N

100

VC=Te 7*SURT (OMI¥(TCH% (=) o/60) ) #(PCHR(24/36))*)e0E~Q7
CALL VISC(TsTCsVCsA)

D=SQRT (4.%AC/341416)

R=ABS (Y*D#9.8/(AC*A))

IF(RYGs495

FR=40

GO TO 3

F(ll=405

DO 1 I=1»40

FUl+1)=1e/((e86858*ALOGIABS (R*SQRT (F(l}))i=~eBi%¥*2)
FR=F(I+1)

IF{I=111s1y2

IF(ABS (F(I+1)=F(1))=1e0E=07)3s1»1l

CON1INUE

[F(+86858*ALOG(ABS(R*SQRT(FRI )1 =e8)616197

FR=1040

GO 70 3

WRITE(&61+100)

RETURN

FORMAT(3Xs15HFRICT TOLERANCE)

END
'

81




[aN AN AN A YA}

82

SUBROUTINE TRAJC(ALTIFMoHGIPASTAIRAICA)

PA=AMBIENT PRESSURE

TA=TEMPERATURE

RA=DENSITY

CA=SPLED OF SOUND ‘

PAL(N)=sPRESSURE UUTSIDE PIPE AND LEAKS AT TIME Tl
ODIMENSION W1(40)

COMMON MPRNT

COMMON NHsNINToNPIGCIOMsTCoPCoGoTT(4Q) o HT(4O) s FMT(4L0) o FMF{40) sWINO
COMMON CPF({40+5) sA(5) sHR(S)sPLIL)sVOI(B)»ALID)sCCF(5)9sPALID)IPZI())
COMMON P1l{5)sR1I(5)sAMLIS5) sTLsCML(5)9ALL(5)

COMMON P2(5)sR2(5)sAM2(5)9T24CM2(5) sAL2(5)

CALL INTER{1oNHslslsoTToHT»T1»ALT)

CALL INTER(1sNHsLoloTToFMTeT1sFM)

DO 1 I=1sN

DO 2 J=1lNP

WL(J)=CPF(JsI])

CALL INTER(L1sNPslsleFMFeW1leFMIPAL(I]))

CONTINUE

HG=ALT#64378178E+06/(6378178E+06+ALT)

CALL ATMOS(HG»PA»TASRASCA)

DO:3 I=1sN

PAL(I)=PA+RA*PAL (1) *( (FM*¥CA)*%2) /240

RETURN

END
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PROGRAM VENT
VENTING THROUGH A PIPEs HEAT ADDITION TO PIPE
69696 9 9 36 96 9 3 3 36 3 36 3 3 5 3 3 3 30 36 36 96 I K 0 36 9 363 36 36 3 I I I I I I I I I eN
NH = NUMBER OF CARDS FOR TRAJECTORY DATA
N =NUMBER OF COMPARTMENTS+ALSO NUMBER OF LEAKS
ONE LEAK PER COMPARTMENT
PIPE IS CONSIDERED AS COMPARTMENT NOe 1
HT = ALTITUDE AT TIME TT IN METERS

FMT = MACH NUMBER AT TIME TT

A = ORIFICE AREA BETWEEN N COMPeIN METERS

VO = VOLUME OF COMPARTMENTS IN METERS3

CPF= PRESSURE COEFFICIENT AT MACH Ne

A = AREA OF NV ORIFICES OF COMPe 1 IN METERS
P = PRESSURE IN COMPARTMENT IN (KG/M2)

CM1= COMPARTMENT MACH NUMBER

AL1l= LEAK MASS FLOW

R = DENSITY OF N COMPe IN KGeSEC./M4

AL =LEAK AREA OF COMPeN IN METERS

HR =HYDRAULIC RADIUS OR MEAN RADIUS IN METER
TC = CRITICAL TEMPERATURE OF GAS

GC = GAS CONSTANT OF GAS (M/DEGeK)

PC = CRITICAL PRESSURE OF GAS IN ATM(KG/CM2)
OM = MOL WEIGHT OF PARTICULAR GAS

CCF= RADIAL CLEARANCE OVER FLOW LENGTH

Wl =ADDITIONAL LOSS COEFFICIENT FOR PIPEs IF NONE ENTER Qe
IN PROPER FORMAT
NUMBER 1 COMPe [S THE COMPs THAT VENTS INTO THE ATMOSPHERE

QT = HEAT ADDITION ALONG TRAJECTORY
Q = TOTAL HEAT ADDITION TO THE PIPE AT TIME T1
COMMON MPRNT
COMMON NHsNsNTsNPosGCsOMsTCoPCoGeTT(40)sHT(40) 9 FMT(40) s»FMF{40) sWaNQ
COMMON CPF(4095) sA(5) sHR(S5) sPLIL1IsVO(S5)sALIS)sCCF{5)sPALIS) sPZ( 1)}
COMMON P1{(5)sR1(5)9AML(5)sT1sCM1(5)sALL(5)
COMMON P2(5)sR2(5)sAM2(5) sT2sCM2(5) sAL2(5)
COMMON WH(4095) sTP(40) sOP(40) sEPIERIEMIEMXIPAITAIRASCAIALTIFM
COMMON WM({4095)9sQT(40)9QsAM3(5)9P3(5)
DO 5 [=145
AM1(])=20,0
5 AM2(I)=z140E=-07
CALL INPUT

D=(2¢/(G+1le) ) ¥%(G/(G=1e))
DO 13 I=NOsNT
Il1=]=1
Tl=11
T2=T1=140
CALL TRAJ
IF(I=1)491104
4 DO 15 L=1920
IF(L=1)6+647
6 DO 8 K=1sN
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20

19
18

10
16
17
24

22
15

11

14
12

13
555

90
91

84

Pl(K)=240%P2(K)=P3(K)

AM1 (K)=2¢0%AM2 (K)=AM3 (K )

DO 20 K=2sN

IF{K=2)191ly2

CONTINUE

CALL PARTB(KsLsI)

GO TO 23

CONTINUE

CALL PARTA(IsKsLsD)
WHLsK)=Pl(K=1)

WM(LsK)=AM1 (K)

IF(L=1)10910+9

DO 3 K=1sN
DEL=(WM(ILsK)=WM(L=19K)}/WM{LsK)
IF(MPRNT) 18518919
WRITE(61991L)IKsWM{LsK) sWM(L=19K) sDEL
IF(ABSI{WM({LsK)=WM(L=19K))/WM(LsK))=5,0E=03)393+10
CONTINUE

GO TO 12

IF(L=3)159+16s16

DO 17 K=3sN
Pl{K=1)=WH(LsK)=(WM{LIK)=WM{L=1sK))*¥(WH(LIK)=WH{L=1oK))/(WM(LIK)=
126 0%WM(L=19K)+WM(L=29K) )

DO 24 K=1»sN
AML(K)=(WM(LsK)+WM(L=19K) ) /240
IF(MPRNT) 15915422
WRITE(61990)LsLoAMLIL) sAML(2) sAML(3) s AM1(4)sPL{2)P1(3)
CONTINUE

GO TO 12

EM=040

EMX=0.0

DO 14 1P=1sN

CM1(IP)=+040

AL1(IP)=+040

CALL OUTPUTI(IsL)

WRITE(619555)

CONTINUE

STOP

FORMAT ( 1HO)

FORMAT(2144+8E1548)
FORMAT(I495E1548)

END
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SUBROUTINE PARTB(KlsLlsl)
DIMENSION PM(4l)

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
K=K1l=1
NU=Q

NS=0

DO 1 L=

MPRNT

NHINOSNTsNP sGCoOMosTCoPCoGoTTIL4O) sHTI(GO) sFMT(40) 9FMF(40) s WoNO
CPF(4095)sA(5) sHRI5)sPLIL)»VOI(5) sAL(HD) s CCFI5)sPALID) oPL(L)
PL{5)yR1I(S) sAMI(5) s T1sCML(5) pALLLD)
P2(5)sR2(5) sAM2(5) s T29CM2(5) sAL2(D)

WH(4O095) s TP(40) sOP(40) sEPIERIEMIEMXsPAITAIRAWCAWALT oFM
WM{4095) QT (40)9Q

1940

IF(MPRNT=11232910
WRITE(61+555)
WRITE(619100) LK
IF(L=2)69395
PM{L)=P1(K1l)

GO TO S-
PM(L)=e¢998#PM(L=1)
PL(K1)=PMI(L)
TO=P1(K1)/(R1(K1)#*#GC#9,8)
CALL ENTRI{KSV)
PM(L)=P1(K1}
AM1(K1)=AM1(K)

HPO=EM

TL=TO/ (le+(G=1e ) #EM *EM /2)

CALL FRICT(AMLI(K ) sA(K)sTLIFRIVISIRN)
FF=G*(FR¥PL(K)/(2e¥HR(K) )+W)

CALL PIPE(FFsCE»SVIHPTO»TX)
IF(MPRNT=1)11s11912
WRITE(619100)}LsKsL1oPLIK)IEPIEMIEMXIPALIK) sAML(K) 9 AML(K1) 9HP
WRITE(619100)LsK1sL1loP1(KL1)sRI(KLI)IIP2(K1)P2I(K)
DE=P1(K)=PAl(K)

DEM=HPQO=HP

CALL ITER(NUSNSsPM{L) sDESsDEMsPM(L+1)9sMSBsMSO)
IF(MPRNT=1)13913914
WRITE(619101)LsKoAMI(K1)oPM(L)9sPM(L+1)9DE»DEM
IF(EMX=1e11T797s7

IF(MSB)44+8y4
IF(ABS(DE)=(1e0E=Q07*P1(K1)))848,1
IF(DE+(260E=07%P1{(K1)))1s949
IF(ABS(DEM)=140E=04%EM)B 8918

IF{MS0O) 1981

CONTINUE

WM{L1sK)=AM1(K)

WMILL1sK1)=AM1I(K1)
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CM1(K1)=EM

CM1(K)=EMX

[F(MPRNT) 15915916
WRITE(619102)L1sLoMSBIMSOYAMI(K) sPL(K1)9sP2(K1)
RETURN

FORMAT(21496E1548)

FORMAT (31498E1548)

FORMAT(4]1498E158)

FORMAT (1HO)

END



SUBROUTINE INPUT
COMMON MPRNT
COMMON NHaNsNTsNPsGCorOMsTCoPCrGoaTT(40) sHT(40) 9FMT(40) 9FMF(40) oW oNQ
COMMON CPF(4095)sA(5)9HR(5) sPL{1)sVO(5)9AL(5)sCCF(5)sPAL(5)PZ (1)
COMMON PL1(5)9R1(5)sAML(5)sT1sCMLI(5) 9ALL(5)
COMMON P2(5)9R2(5)2AM2(5])5T2sCM2(5)sAL2(S)
COMMON WH(4095)9TP(40)s0P(40) sEPYERIEMIEMXsPASTAIRAICAIALT 9FM
COMMON WM(40+5)9QT(40)sQsAM3(5)sP3(5)
READ(609100)NHyNP s MPRNT
READ(60s101)0MsTCsPCsGCoG
VC=T7eT%SQRT (OMI % (TCH%(=10e/60) )% (PCHH(24/34))%1e0E=07
WRITE(61+126)GCsOMsTCHPC
WRITE(619128)VC
DO 1 I=1sNH

1 READ(609101) TTUI)sHT(I)sFMT(I)sQT(1])
DO 2 J=1sNP

2 READ(60s101IFMF (J) sCPF(Js1)sCPF(Js2)9CPF(J93)9CPF(Jr4)
READ(609100)NQsNT N
WRITE(61+130)
READ(609101) A(1)sHR(IL)IsPL(L1)sR1(1)sP1(1)
WRITE(619124)A(1)sHR(1)sPLI(1)
WRITE(61+108)
DO 5 I=24N
READ(60s101) A(I)sVOUI)sR1(IDsPL(I)»AMI(I)
READ(609101) AL(I)sHRUI)»CCF(LI)sALL(T)9AMR(])
READ(60s101) P2(1)
R2(I)=R1(1)
P3(1)=P2(1)
AM3(1)=AM2(1)
P2(I)=P1(1I)
AL2(I)=ALY(T)}
AMZ2 (1)=AM1(1])
WRITE(619125)1s A(I)sVOUI)sR1I(I)sP1L(I)

5 WRITE(619127) AL(I)sHR(I)sCCF(I)
AM3{1)=AM2(2)
AM2(1)=AM1{2)
EP=P1(2)
ER=R1(2)
READ(60s101)W
WRITE(619108)
RETURN

124 FORMAT(10H PIPE AREA9EL1548+10H HYDReRADe*E154898H PIPE LesEL548)

130 FORMAT(13H PIPE SECTION)

101 FORMAT{(5E1548)

100 FORMAT(913)

128 FORMAT(15H CRITeVISCOSITYsE13e696H KG/MS)

126 FORMAT(11H GAS CONSTe9EL134635H M/OKs7H MOL WerE13e699H CReTEMP4+EL
1364693H OKs9H CRePRESesEL13e694H ATM)

127 FORMAT(22H LEAK AREAYE15e893H M2+10H HYDReRADeEL3e692H
1 My1l6H RADCLEAR/FLeLesEL1346)

125 FORMAT(9H COMPeNResI3310H ORIFeAREASEL5e893H M295H VOLesE15e893H M
13+8H DENSITYsEL1S5e8»8H KGS2/M4s7H PRESe E156896H KG/M2)

108 FORMAT(1HO)
END
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SUBROUTINE TRAJ

PA=AMBIENT PRESSURE

TA=TEMPERATURE

RA=DENSITY

CA=SPEED OF SOUND

PAL(N)=PRESSURE OUTSIDE PIPE AND LEAKS AT TIME T1
DIMENSION W1(40)

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

MPRNT

NHoNsNTosNP osGCrOMesTCoPCoGoTT(40)sHT(40) 9 FMT(40) sFMF{40) o WeNO
CPF({4095) sA(5)sHR(S)sPLIL1)sVOIS)IsALIS)sCCF(B)9PAL(D) sPZ( 1)
Pl(5)sR1L(5)9AM1(5)9oT1sCMLI(5) sALL(5)
P2(5)sR2(5)9sAM2(5)sT29CM2(5) 9AL2(5)

WH(G0»5) s TP(40) sOP(40) 9y EPsERIEMIEMXsPAITASRAICASALT sFM
WM(4095)9sQT{(40) 9Q

CALL INTER(lLeNH91lslsTToHT»T1sALT)
CALL INTER(LoNHs1l»lsTTsFMTeT1leFM)
CALL INTER(1sNH»1lolsTTeQTsT1sQ)

DO 1 I=

1N

DO 2 J=1sNP

Wl{J)=CPF(Jsl)

CALL INTER(1sNPslslsFMFaWLloFMsPAL(])})
CONTINUE
HG=ALT*6e378178E+06/(6e378173E+06+ALT)
CALL ATMOS(HGYPA»TA»RASCA)

DO 3 I=1sN
PAL(I)=PA+RA¥PAL(I)*((FM*CA)*#2)/240

RETURN
END
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SUBROUTINE PIPE(FRsCXsCEsH»TO»TX)
SUBROUTINE FOR CALCULATING PIPE FLOW WITH CONSTe HEAT ADDITION
TOTAL HEAT INPUT
PL PIPE LENGTH
T0 = TOTAL TEMPERATURE AT ENTRANCE OF PIPE

FR = FRICTION TERM (&4F)/D

G = SPECe HEAT RATIO

GC = GAS CONSTANT

EN = ENTRANCE MACH NUMBER

PE = PRESSURE AT ENTRANCE OF PIPE
EX = EXIT MACH NUMBER

PX = PRESSURE AT EXIT

RE = DENSITY AT ENTRANCE

RX = DENSITY AT EXIT

CE SPEED OF SOUND AT ENTRANCE
CX SPEED OF SOUND AT EXIT
H = ENTRANCE MACH NUMBER FOR CHOKED FLOWs EMX=1
PL = PIPE LENGTH
DIMENSION T(21)sA(21)sFX(51)eFM(51) 9TM(51)
COMMON MPRNT
COMMON NHoNZ sNTsNPosGCsOMsTCoPCHGoTT(40) sHT(4O0) 9 FT(40) 9FMF(40) s WaNU
COMMON CF{(4045) 9»AA(5) sHR(S5)sPLIL)sVO(5)sAL(S)sCCF(5)9PALIS)sPZ(1)
COMMON P1(5)sR1(5)9sAML(5)sTIsCML(5) sALL(5)
COMMON P2(5)9sR2(5)sAM2(5)9T2sCM2(5) sAL2(5)
COMMON WH(405) s TP (40)sOP(40) sEPIERIEMIEMXIPAITAIRASCAIALT9FMM
COMMON WMI(4095)sQT(40)»Q
N=6
M=20
1J=M+1
Al=M¥*N
DX=1e/Al
CP=G#*GC/(G=14)
DT=Q/CP
JE=N+1
B=EM*EM
Gl=(G=1e) /20
G2=G=1.
G3=(G+1e) /2
T(1)=T0O
TM(1)=TO
A(l)=EM%%2
FX{1)=0s
FM(1)=A(1)
CALL PIPEA(JESMaNIMESsTosTMsAsFXsFMeDXoDT9SLPsAMeTOLlsFR)
TERM=ME
X0=TERM/20.
TX=T(ME+1)
EMX=FM(ME+1)
EX=EMX
MA=0
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IF{MPRNT=2)34345
WRITE(61990)JEsMaNsMEsMASSLP X0 TX’EMXOEX’TOIODT
FORMAT(51398E1548)
IF{SLP=e¢0020)65965466

TERM=ME=1

XO0=TERM/20,

AM=A (ME)

TOl1=T(ME)

TM(ME)=T(ME)

IF(X0=1e)74999

N=20

Al=N

DM2=(1e=AM)} /20

DM1=DM2/A1l

All)=AM

T(1)=T01

CALL PIPEB(JESMsNsMAIMEST»TMsA»FXsFMoDToDMLoDM29TXsFRXV)
CONTINUVE

M1=ME+MA

KK=1

TM(M1)=TX

IF{EMX=14)192s2

FX(M1)=140

FM(M1)=EMX

EXA=SQRT(EMX)

H=EM*SQRT(le/EXA)

GO TO 4

EMX=140

EXA=1e0

H=EM*SQRT(FX(M1})
DST=TX*(1e+GLl*¥EM*EM) /(TO%(1e+G1*EMX))
Pl(1)=EP*EM*SQRT(DST)/EXA
R1(1)=ER*P1(1)/(DSTH*EP)
CX=SQRT(G*P1(1)/R1{(1))

EMX=SQRT {EMX)

IF (MPRNT=2)61+61+8 |
WRITE(61+91)IMLsKKesEMXsFX({M1) s TMIML) sEXAsHsPL(1)sR1(1)
FORMAT(21398E1548)
WRITE(61991)M1sKKsTXsTOsDTsPAL(1)
RETURN

END
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SUBROUTINE PIPEA(JESMaNIMESToaTMaAIFXsFMoDXsDT9SLPIAMITOLFR)
DIMENSION T(21)9A(21)9FX(51)9FM(51) 9TM(51)

DIMENSION Y(91)9S{91)9T1(91)s51(91)sBM(91)

COMMON MPRNT

COMMON NHsNZoNT sNPosGCoOMyTCoPCoGoTT(40) sHT(4O) sFT(40) oFMFI40) s WINQ
COMMON CF{4095) 9AA(5) sHR(S5)}sPLI1)9VO(5) sALI5) 9sCCF(5)9PALIS) sPZI(1)
COMMON P1(5)sR1(5)9AML1(5) 9 TIsCM1(5)sALL(S)

COMMON P2(5)9R2(5)sAM2(5)sT2sCM2(5) sAL2(5)

COMMON WH(4095) sTP{40) s0P(40) yEPYERIEMIEMXsPAITAIRAICA9ALT 9 FMM
COMMON WM(4095)9QT(40)sQ

TOL=1+0E=Q6

1J=aM+]

Gl=(G=1le) /20

G2z=G=1.

G3=(G+1le) /24

DO 1 I=1sM
Al=A(T)*(1e+G*A(L) ) (1e+GL¥A(T)IXDT/(TIIIR(1e=A(I)))
A2=G%(A(T)#%2 )% (Le+GLl*¥A(I)I*FR/(1eO%(1le=A(])))

DO 42 J=1sJE

X=J=1

Y{J)=(AL1+A2 ) % X*#DX+A(])

S(J)1=Y({J)

TI(J)=T{I)+DT#DX*X

T{I+1)=T1(JE)

TMUI+1)=T(I+]1)

DO 2 J=1sJE
Al=S(JI%{1e+GHS(J)I%(Le+GLl¥S{JU))XDT/(1eO*T1(J)*(1e=5(J)))
A2=G*(S(J)#*2 )% (1le+GLl*¥S(J)IRFR/(LeO*(le=S(J)))
S1(J)=(Al1+A2)

CALL INT(JEsDXsS1lsBM)

DO 3 J=1lyJE

S{JI=A(1)+BM(J)

IF(S(JE)Y)TO9 71971

IF(S{JE)=e95)72+72470

NL=JE+1

GO TO 49

DO 43 JU=1s9JE

IF{MPRNT=5)44445

S§SJ=SQRT(S(J) )

SYJ=SQRT(Y(J))

WRITE{(61950)19sJsJEsSSUSYJsTOL
IF{ABSF(SQRTF(S(J))=SQARTF(Y{(J) ) )=TOL)43943 944

CONTINUE

NL=JE+1

GO TO 20

NL=J

DO 35 J=1ysJE

Y(J)=5{J)

SLP=S1(JE)I#*DX

IF(I=-1J)36+34+34
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45

33
51

49
34

37

54
90

92

DO 45 J=1lyJE
IF(S1(JI#DX=e0020)459454933
CONTINUE

GO TO 34
IF(JE=60)51951949
N=N+4

JE=N+1

Al=M%N

DX=1e/A1

GO TO 48

1J=1

Al(I+1)=S(JE)

ME=]

AM=A(I+1)
TOl=T(I+1)
IFINL=(JE+1))46937+37
Al=]
FX(I+1)=A1/20.
FM{I+1)=A(]+1)
TMUI+1)=T(I+1)
IF(I=-1J) 1454454
CONTINUE

RETURN
FORMAT(3]448E1548)
END
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38

18
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SUBROUTINE PIPEB(JESMsNIMAIME s ToTMoAsFXsFMeDT9sDM19DM29TX9FR9X0)
DIMENSION Y(91)sT1(91)9Z2(91)98(91)19S51(91)eBMIIL)sR{(91)IIP{51)eC(51)
DIMENSION T(21)9A{21) sFX({51)sFM{51)»TM(5]1)

COMMON MPRNT

COMMON NHoNZsNT sNPsGCoOMesTCoPCoGrTT(40) sHT(4O) oFT(4O) s FMF(4Q) sWoNO
COMMON CF(4095) sAAL(S) sHRIS) 9PL(1)oVO(5)sAL(5) oCCF(5)2PALIS)9PZ(1)
COMMON P1(5)9sR1(5)sAML(5)sTIsCM1(5)9ALL(D)

COMMON P2({5)sR2(5) sAM2(5) sT29sCM2(5) 9AL2(D)

COMMON WH(4095) s TP(4Q)sOP{40) sEPIERIEMIEMXIPAITAsRASCAIALT»FMM
COMMON WM(40+5)9QT(40) »Q

TOL=1e0E=Q6

Gl=(G=1le) /2

G2=0G~1.

G3=(G+1e) /20

C(1)=Xx0

DO 4 [=1eM

Al=(le=A(I))/7(A(]1)*(1e+G1*A(])))
A2=1e/((1lo+GH*A(I))IXDT/T(II+G*A(])*#FR)

SLP=A1*A2#DM]1

IF{N=60)62962461

IF(N=6)603634963

IF{AL*A2%DM1=40025)39+38940

IF(AL*A2%¥DM1=4,0015)41941938

N=N=2

JE=N+1

IF{N=6)60352952

N=6

JE=T

GO TO 38

N=N+4

JE=N+1

[FI{N=60)52961961

N=60

JE=61

GO TO 38

Al=N

DM1=DM2/A1l

GO TO 53

DO 5 J=1yJE

X=J=1

IF(J=1)18+18+19

Y(J)r=C(I)

Ti(J)=T(1)

2(J)=Y(J)

GO TO 5

Y(J)=Y{J=1)+A1RA2*DM]

TL(D)=TL(J=1)4DTH{Y(J)=Y(J=1))

20J)=Y{J)

S(J)=A(1)+DM1*X

Al(I+1)=S(JE)
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12
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13

26

22
28

27
90

DO 8 J=1yJE
Al={1e=S(J))/(S(JI*(Le+GLl¥S(J)))

A2=1e/((1e+GH¥S(J)IXDT/TL(J)+GRS(J)*FR)

SliJ)=(A1%*A2)

CALL INT(JEsDM1+S1sBM)
DO 10 J=1lyJE
Z(J)=C(I)+BM(J)

TF(J=1)16916917

TN =T(])

GO TO 10

T =TL(J=1)+DTH{2Z(J)=2(J=1))
CONTINUE

DO 11 J=1+JE

IF(MPRNT=5)19192
WRITE(61990)I9JeJEsZ(J)sY(J)sTOL
IF(ABSF(Z(J)=Y(J))=TOL)Y11lsl1s12
CONTINUE

NL=JE+1

GO TO 21

NL=J

DO 13 J=1sJE

Y(J)=2(J)

C{I+1)=Z(JE)

T(I+1)=T1(JE)
IF(NL={JE+1))14+696

MA= ]

M2=ME+1

FX{M2)=C(I+1)

FM{M2)=A(I+1)

TM(M2)=T(I+1)
IF(C(I+1)=16)22+26926

R{l1)=1le

CALL INTER(1sJEslslsZsSsRsP)
EMX=P(1)

CALL INTER(13JEslslsZsT1sRsP)
TX=P(1)

GO TO 27
IF(A(I+1)=16)15+28+28

EMX-‘-]..O

TX=T(I+1)

GO TO 27

IF(I=M)4+28+28

CONTINUE

RETURN

FORMAT(31498E1548)

END
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SUBROUTINE ITER(NUINSsPMsDEsDEMsPM] sMSUBIMSON)
DIMENSION DPX(40)9sAMA{40) »DPE(40)sAMB(40)

COMMON
COMMON
COMMON
COMMON
COMMON

MPRNT
NHONINToNPsGCsOMaTCoPCoGoTT(40) sHT(4O) 9FMT(40) o FMF(40) s WsNO
CPF(4035) 9A(5) sHR(5) sPLI1)9VOI(S) s AL(5) s CCF(5)9PAL(5)sPZ(1)
PL(5)sR1(5)9sAMLIIS5)sT1sCML(5) sALL1(5)
P2(5)sR2(5)9AM2(5)9T29CM2(5) sALZ(5]}

COMMON WH(4095)sTP(40) 0P (40) sEPIERYEMIEMX
MSUB=1

MSON=1

IF(EMX=1e)193,3

NU=NU+1

ANU=NU

DPX(NU)=DE

AMA (NU ) =PM

IF(NU=2)69292

AA=ABS (AMA(NU)=AMA (NU=11)

IF(AA=1e0E=~07)9912912

PM1=AMA(NU) =DPX (NU)# (AMA(NU)=AMA(NU=1))/ (DPX{NU)=DPX(NU=1))

GO TO 5

MSUB=0

IF(ABS(DE)=(1e0E=Q7#P1(2))1898s15
IF{ABS(DEM)=240E=06)16916+8

MsuB=1

EMX=140
NS=NS+1

ANS=NS

DPE(NS)=DEM

AMB(NS)=PM

IF(NS=2)8s4s4
AB=ABS(AMB{NS)~AMB(NS=1))
IF(AB=1e0E=07)13s14s14

MSON=0

GO TO 8

PM1=AMB(NS)=DPE(NS)}*(AMB(NS)=AMB(NS=1))/(DPE(NS)=DPEI(NS=1))
IF(PMI=-AMB(NS))10911»10

PM1=AMB(NS) ¥ {ANS+0+010) /ANS

IF(ABS(DEM)=1e0E=Q4%EM) 79795

[F(DE+1«0E=07)19595

PM1l=(PM+P2(2))/240

GO TO 5

PM1=49995%PM

RETURN
END
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SUBROUTINE OUTPUT(INTsL)

COMMON MPRNT

COMMON NHsNsNToNP»GCoOMsTCoPCoGsTT(40) sHT(40) 9o FMT(40) s FMF(40) sWeNO
COMMON CPF(4095) 3sA(5) sHR(S5)sPk(1)9VO(5)9AL(5)sCCFI5)sPALI5)9PZI(1)
COMMON P1(5)sR1(5)sAMI(5)sTLsCML(5)9ALL(S)

COMMON P2(5)3R2(5)+sAM2(5)sT2yCM2(5) 9AL2(5)

COMMON WH{4095) s TP{40)sOP(40) sEP»ERIEMIEMX9sPAITAIRAICAIALTIFM
COMMON WM(40+5) QT (40)9»QsAM3(5)4P3(5)

WRITE(61950)T1sL

FORMAT(11H TIME E1265911H NReITERe 1I3)
WRITE(61960)ALTsFMsPA»TAIRA

FORMAT(11H ALTITUDE E12¢5911H MACH NRe E12e45911H AMBePRe El2e5

1911H AMBWTEMP El2e5911H AMBeDENS E1245)

WRITE(61962)EPSERYEMyAMIL(L)
FORMAT {34H COMPARTM, PIPE ENTRePRe E12e5911H ENTReDENSSEL

12¢5911H ENTReMeNReE12e5911H ENTReMeFLeEL12e5)

WRITE(61962)P1(1)9sR1(1)PEMXsAMI(1)
FORMAT (34H EXIT PRe ElZ2e5911H EXITeDENS El

12¢5911H EXIT MeNReEL12e5911H EXIT MaFLeELI265)

WRITE(61965)Q

FORMAT (34H HEAT ADe El2.5)

DO 1 I=2sN

DPN=P1(I)=PA

WRITE(61963)IsPL{1)sRLII)sCMI(I)sAML(])
WRITE(61964)PA1(1)sALL{T)sDPN

FORMAT (12H COMPARTMe I3919H PRESSURE El2e5¢11H DENSITY

1 E12e5911H MACH NR £1245911H MASS FLOW El1245)

FORMAT (34H LEAK PRe E12e5911H LEAK MeFLeEL

12e¢5511H PRES«DIFFsEl245)

IFCINT=NT) 49696

NO1=NT+1

NT1=201

WRITE(62980INOLsNTLsN
WRITE(62981)A(L)sHR(1)sPL{L1)OR1I(L1)ePL(L)
DO 2 I=2sN
WRITE(62+81)A(I)YsVOULI)»RI(INPLITI)sAMIC(I])
WRITE(62+81)ALIT) sHRITI) »CCFII)sALLIT ) sAM2(])
WRITE{(62981)P2(1) .
WRITE(62s81)W

GO TO 10

GO TO (8s10)9SSWTCHF (L)

NOl=INT+1

GO TO ¢9

DO 3 I=1sN

AM3(I)=AMZ2(])
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P3(1)=P2(1)
AM2 ([ )=AM1( 1)
IF(INT=1)59745
AM2(1)=AM1{I)+1e0E=06
P2(1)=P1l(1)
R2(1)=R1(I)
CM2(1)=CM1(1I)
ALZ2(1)=ALL(])
AM2 (N+1) =040
AM1(N+1)=040
EP=+e99%EP
RETURN
FORMAT(9I3)
FORMAT({5E158)
END
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